
JPRS-JST-88-024 343069

13 OCTOBER 1988

!■■■■!
FOREIGN
BROADCAST
INFORMATION
SERVICE

JPRS

Science &
Technology

Japan

COMPUTER ARCHITECTURE

19980612 033

REPRODUCED BY
II«; DEPARTMENT OF COMMERCE -
NATIONALTECHNICAL INFORMATION SERVICE /O
SPRINGFIELD, VA. 22161

DTIC QUALITY INSPEciED 0

JPRS-JST-88-024

13 OCTOBER 1988

SCIENCE & TECHNOLOGY

JAPAN

COMPUTER ARCHITECTURE
43067589 Tokyo KONPYUTA AKITEKUCHA SHINPOJIUMU RONBUNSHU in Japanese
17-18 May 88, PP 27-35; 55-64; 89-97; 199-208

[Selected papers from the Computer Architecture Symposium held
17-18 May 1988 in Tokyo, sponsored by the Information Processing Society of

Japan] CONTENTS

Neural Network Simulator Architecture 1

Optically Connected 3-D VLSI Sorting Scheme 17

Tabular List Representation Oriented Machine 31

Parallel Processing Architecture, Sensor Information Processing 45

Neural Network Simulator Architecture

43067589a Tokyo KONPYUTA AKITEKUCHA SHINPOJIUMU RONBUNSHU in Japanese
17-18 May 88 pp 27-35

[Article by Nobuki Kajiwara, Toshiyuki Nakada, Satoru Matsushita, and
Tomohiko Koike of NEC Corp.: "Neural Network Simulation Machine--NeuMan"]

[Text] In recent years, neural networks (NNs) have been actively studied
as models for fine-grain high-level parallel computations. Various models
and learning algorithms have been proposed and research for the development
of neural network hardware has been conducted.

In this paper, a special simulation machine capable of simulating large-
scale neural networks at high speed will be discussed. The special
simulation machine pipelines the simulation algorithm to be used, divides
the target neural network into partial networks, and processes the partial
networks in parallel using special processor elements (PEs).

1. Introduction

We have proposed an information- and time-continuous neural network model
based on the idea that a neural network is a fine-grain parallel computation
model, and have been engaged in the experimental generation of a neural
network description language, a compiler and simulators and in experiments
on small-scale information processing functions (a simple control system,
a forward inference system, time-series pattern recognition, N_Queen, etc.)
of a neural network. In testing the neural network, we stored the neural
network program as the weight of the links and tested neural network
functions by simulation. For the simulations, we used simulators
implemented by software on conventional types of computers (LISP machine,
VAX, PC9801). The software-based simulation performed on the LISP machine
recorded a processing speed of 90 to 400 links per second. (The simulator
to be used on the LISP machine has been created without much importance
attached to the processing speed. It will be possible to raise its
processing speed by about one order of magnitude.) With another
experimental simulator created for use on the VAX8650, to which importance
has been attached to the processing speed, a processing speed of about
140 K links/s has been achieved. However, even this processing speed will
be inadequate for conducting larger-scale experiments or developing
practical applications. The inadequate processing speed is attributable to

the simulation of parallel computations by consecutive sequence computers.
Subsequently, we came to think it necessary to develop a special simulation
machine capable of utilizing the parallelism characteristic of neural
networks and began to study a special neural network simulation machine--
NeuMan. The NeuMan enables high-speed simulation of a large-scale neural
network by pipelining the simulation algorithm, dividing the neural network
into partial networks and processing the partial networks in parallel using
more than one processor element.

2. Basic Design

Two approaches can be taken for the development of a special machine for
neural network simulation. In one, analog circuits are used for neural
network simulation. In the other, digital circuits are used, as is done in
the conventional computers. In an analog circuit used to simulate a neural
network, the nodes of the neural network are represented by transistors and
operational amplifiers, while the links are represented by resistors. A
neural network simulation machine with an analog simulation circuit
comprising the elements, as mentioned above, can operate at higher speeds
than can a comparable machine comprising a digital circuit.

However, the analog-circuit machine requires the target neural network to
be programmed when the analog circuit is formed. Once the neural network
is programmed for the machine, it is difficult to modify the program using
current techniques. This method is not yet realistic for the simulation of
a large-scale neural network. A neural network simulation machine with a
digital simulation circuit is slower than a comparable machine with an
analog simulation circuit, but it permits program modification and the
simulation of a large-scale neural network. If it is designed to be
operated under a microprogram, it allows the neural network model to be
modified or to be used for learning simply by rewriting the microprogram.
We have selected the digital circuit type for its flexibility and capability
for large-scale neural network simulation use.

A neural network can be represented by a matrix. Supercomputers and array
processors can perform matrix operations at high speeds, so neural network
simulators made from those high-speed processors have been proposed. In an
analog circuit-type neural network simulator, a neural network is
represented by a resistor matrix. The simulation method in which the neural
network is represented by a matrix is efficient when the nodes of the neural
network are almost perfectly interlinked. However, the storage capacity and
hardware quantity required for neural network simulation by this method
increases in proportion to the square of the number of nodes. Therefore,
with this method, the simulation of a neural network with several thousand
or several tens of thousands of nodes is unrealistic.

Generally, each node of a neural network is not linked with all the other
nodes of the neural network. The brain of a human is said to comprise
several tens of billions of neurons. The number of synapses held by each
neuron is said to range from several thousand to several tens of thousands.
This is much smaller than the total number of neurons contained in the
brain. We previously created a small-scale forward inference system

comprised of a neural network. In the neural network, each node had an
average of five synapses. When a practical information processing system
comprising a neural network is created, the system is divided into function
modules (partial networks). In the neural network, although many links
exist between nodes within each function module, the number of links between
the function modules is not as large. If this type of neural network is
represented by a matrix, the matrix becomes sparse, with most of its
elements comprising zeroes. Therefore, using a supercomputer, array
processor or an analog-circuit machine to simulate the neural network will
be inefficient, causing many useless computations to be performed and
involving the use of a large quantity of memory and other hardware
resources.

Our neural network simulator divides the neural network to be simulated into
partial neural networks and extracts their parallelism characteristic by
processing them in parallel, using more than one processor. Instead of
producing a matrix that would represent all the links in the neural network,
a link table (fan-out table)is prepared for each node. It contains
information on the links stemming from the node.

Accelerated processing is achieved by pipelining the simulation algorithms,
thereby extracting their parallelism characteristic, and also by dividing
the neural network into partial networks and processing the partial networks
using more than one processor element, thereby extracting their parallelism
characteristic.

3. Neural Network Model

Figure 1 illustrates the image of the neural network system proposed here.
The "environment" shown in the figure represents where the neural network
operates. Generally, it is a dynamic system whose condition changes with
time. The neural network consists of the weighted links between each node
and many others.

Network

Se

Context

'* Motor

Ü u
Environment

Figure 1. Neural Network System

It is necessary that the neural network operate while recognizing the
dynamically changing environment. To meet this need, each node has an

internal status, referred to as the activity degree. This internal status
changes with time while being affected by the environment and other nodes.
The pattern of the activity degrees of the nodes contained in the neural
network may be said to represent the current status of the neural network.
The neural network is a dynamic system that determines its actions and
changes its status according to the current status (the activity degree of
each node) and the information obtained from the environment.

The nodes comprise three kinds: sensor, context, and motor nodes. The
sensor nodes change their activity degrees according to environmental
conditions, while the motor nodes work on the environment according to the
activity degrees. The context nodes come between the sensor and motor
nodes, realizing the system functions of short-period memorization and
information processing.

None of such network structure types as the symmetrical structure or layered
structure is assumed for this neural network. An arbitrary structure, which
may be formed through the feedbacking of information to itself, may be
assumed. For purposes of theoretical analysis or study, it is more
convenient to assume a specific network structure. However, from the
viewpoint of information processing capacity, it is more advantageous to not
assume any specific network structure.

Vxx

Figure 2. Neural Network Model

We propose the following time- and information-continuous model as a neural
network model for recognizing a dynamically changing pattern.1 Figure 2
shows the neural network model that permits information feedback to itself.
The activity degree of node x shown in Figure 2 changes when affected by the
activity degrees of other nodes, y1(y2, •••, yn, and itself. Wyxx represents
the weight of the link between node yx and node x. Wxx represents the weight
of the link extending from node x to node x itself. When x, y1(y2, •", and
yn represent the activity degrees of the corresponding nodes, x changes
according to the following differential equation:

rdx/dt = SWyxx • n (yx) + Wxx • n (x) - (1)

where SWyjX • fi (yx) - influence of other nodes
Wxx • n (x) = influence of node x itself

x - attenuation term.

^ u. (X)

Figure 3. Output Function /*

Equation (1) is called an operation equation. Wyxx • fi (yx) is called the
vote from node yx to node x. r is a time constant. The smaller the value
of r, the larger the change in activity degree. the output function \L is
a monotonic increase function, in a wide sense, with a limiter
characteristic as shown by equation (2) and Figure 3.

M (x)
0
2x2

1-2 (1-x)2

1

x £ 0
0 < x £ 0.5
0.5 x < 1
1 < x

(2)

In approaches to neural network simulation dependent on digital circuits,
including cases where simulation is performed by software running on a
general-purpose computer, the operation equation (1) can be solved by
Euler's method in succession. The time At can be integrated by the
following recurrence formula:

accx: - SWyxx • fi (yx) + Wxx • \i (x)
Ax: - At [accx-x]/r
x: - x + Ax

(3)

The operation of the neural network can be defined by a system of operation
equations (1) defined for the individual nodes. Therefore, executing
equation (3) for every node contained in the neural network results in
simulating the entire neural network for At. This process is referred to
as a simulation step. In the simulation step, the following three
operations must be performed for every node of the neural network.

(Vote phase)

The value (vote value) obtained by multiplying the result of applying the
output function to the activity degree of a node by the link weight is
conveyed to other nodes.

(Accumulation phase)

The vote values received from other nodes are accumulated.

(Update phase)

The activity degree of the node is updated according to the results of vote
value accumulation.

Generally, neural network models, including the one proposed here, have the
following attributes:

(1) Composed of many nodes (small calculation elements) and links (with
weight) connecting the nodes.

(2) Each node changes its internal status according to the accumulation of
numeric messages received from other nodes.

(3) Each node calculates its output value by applying an output function
to its internal status. The output value is multiplied by the link weight,
and the product is output as a numeric message to other nodes.

Neural networks with the above attributes can be simulated in the same
manner as that proposed by us. Our simulator is aimed at simulating, at
high speed, the neural network model described in this section. If its
microprogram is modified, it can also be used to simulate other models.

Accunula tor Activity
0 0

1
2

n-I

1
2

I
i

j

n-1

FanOut Link
0 address weight
1 address weight

I—i

2
t
j

n-1

t
t

i
i

—»

Figure 4. Simulation Data Control Format

4. Acceleration Measures and System Structure

The way in which the parallelism characteristic of the target neural network
is extracted affects the performance of the simulator. To obtain a higher
simulator speed, we have directed our attention toward the parallelism
characteristic of the neural network and that of the simulation algorithm.

The nodes in a neural network can operate in parallel. Assigning a physical
processor to each of the nodes will best enhance their parallelism
characteristic. However, it is unrealistic, from both technology and cost
standpoints, to assign to each node a hardware device capable of digitally
performing the three types of operations for node simulation. We have
adopted an approach by which the target network is divided into partial
neural networks and more than one processor element (PE) is assigned to
them. In this arrangement, although the nodes are processed successively
within each processor element, the partial networks assigned to different
processor elements are processed in parallel. This method of parallel
processing has been put to practical use as a circuit division technique for
logic simulation in the CAD field.

Of the three operations to be performed in one simulation step, the vote and
accumulation phases can be executed in parallel. Each processor element has
two processing units. They are used exclusively to process, in parallel,
the above-mentioned two phases in the pipelining mode in order to extract
the parallelism characteristic of the simulation algorithm.

Inter-PE communication network

n .
(Number of router cells: "g" 10 Jill I

Router QXl fXX\

Processor
element

m

Figure 5. NeuMan System Configuration

The system structure of the NeuMan is shown in Figure 5, and a block diagram
of the processor element is shown in Figure 6. The NeuMan consists of
special-purpose processor elements (PEs) and an inter-PE communication
network used for message transfers between processor elements. The neural
network is divided into partial networks, and the partial networks are
assigned to different processor elements. Each processor element to which
a partial network has been assigned executes the vote, accumulation, and
update phases for the nodes contained in the partial network in synchronism

Froi PE Network
L

-

InMSCBuff BypassBuff

*-» Slave Master

To PE Network

outnscBuff

Microcode
"OH ,

VTL3132
Controller

.DataBusA

mcrouooe
R0H_

1
VTL8136
VTL8137
VTL3332

Accuiulator
4X64KByte

,, PataBusB

Activity
FanOut
4X MByte

Processor Eleient
To/Froi
Host or I/O

Figure 6. Processor Element (PE)

with other processor elements. If a node worked on by a processor element
is linked with another node being worked on by another processor element,
the former outputs a vote message to the inter-PE communications network.
The vote message comprises the vote value of the node being worked on by the
former processor element and the address of the node being worked on by the
latter processor element. The inter-PE communications network transfers the
message to the processor element corresponding to the node address included
in the message, the processor element given the vote message locates the
addressee node and adds the vote value to the accumulated vote value for the
addressee node. This is who the vote and accumulation phases are executed.
Each processor element has two processing units able to execute the above
two phases in parallel in the pipelining mode. After executing the vote and
accumulation phases, each processor element executes the update phase
independently of other processor elements.

The inter-PE communications network is a multistage link network comprising
router cells (2-x-2 switches). An inter-PE communications network to which
as many as n processor elements are to be connected requires router cells
equal in number to (n/2) multiplied by log2n.

The NeuMan serves as a back-end processor for the host computer. The host
computer loads data for use in simulating a neural network into the
processor elements via the inter-PE communications network. The host
computer also controls the simulation, monitors the activity degree of each
node during the simulation, and provides an interface between processor
elements and the environment. Since each processor element has an I/O port,
it can also be directly interfaced to the environment without requiring the
service of the host computer.

8

5. Parallel Algorithm

In this section, the simulation of a neural network using a simulator
structured as described in Section 4 will be explained.

Each processor element stores information on the partial network assigned
to it in the activity (x) table, accumulator (x) table and fan-out table (a
table listing the address of node y influenced by node x and the weight Wxy
of the link between node x and node y), as shown in Figure 4.

Each processor element carries out simulation according to the above data
structure to maintain synchronism with other processor elements. Step-based
synchronism between processor elements can be achieved by inputting a
special message (SYNC) for processor element synchronization to the inter-
PE communications network without requiring any major synchronization
operation to be performed.

The contents of processing performed by each processor element during each
of the three phases are as follows:

(Vote phase)

FOR x IN All nodes assigned to PEi DO
mx: - M (Activity[x]);
FOR link IN All fan-out links of node x DO
MSGout.addr :- link.address;
MSGout.vote :- link.weight X mx;
put(MSGout);

put(SYNC);

(Accumulation phase)

MSGin := get();
WHILE MSGin / SYNC DO

Accumulator[MSGin.addr] :=
Accumulator{MSGin.addr] + MSGin.vote;

MSGin := get();

(Update phase)

FOR x IN All nodes assigned to PEi DO
Activity[x] :- Activity[x] +

Atx {Accumulator[x] - Activity[x]}/T;
Accumulator[x] :- 0.0;

(Description of symbols used above)

PEi: Processor element i
Activity: Activity degree of node
Accumulator[x]: Accumulator of node
MSG.addr: Address part of message

MSG.vote: Vote part of message
link.address: Node address of link
link.weight: Weight of link
SYNC: Synchronization message
get(): Message input
put(MSG): Message output
At: Unit of integration

In the vote phase, each processor element performs voting according to the
activity table and the fan-out table for each node assigned to it. The
output of a node is calculated by applying the output function \i to the
activity degree of the node. The calculated output is multiplied by the
weight of the link. The product (vote value) is combined with the address
of the node receiving the vote, and they are output as a vote message to
the inter-PE network. When the processor element completes the voting
procedures for all the nodes assigned to it, it outputs a synchronization
message SYNC to the inter-PE network.

In the accumulation phase, the processor element accumulates the values
specified in the vote sections of the vote messages received via the inter-
PE communications network in the vote accumulators for the corresponding
nodes specified in the address sections of the vote messages received. This
accumulation operation is continued until the processor element receives a
SYNC signal.

Upon termination of the vote and accumulation phases, the processor element
begins to execute the update phase. During the update phase, it updates the
activity degrees of all the nodes assigned to it while referring to the
activity table and the accumulator table.

6. Processor Elements

A block diagram of the processor element is shown in Figure 6. Each
processor element has two processing units, i.e., master and slave
processing units, used to execute the vote phase and the accumulation phase
in parallel. Both the master and the slave processing units are controlled
by microprograms. Therefore, if the microcodes used in the microprograms
are changed properly, the processor element can be used to simulate
different neural network models or to conduct different kinds of research.
The master processing unit consists of a 32-bit floating-point processor,
an integer processor and a sequencer. It can access all resources in the
processor element. It is even possible to carry out simulation using only
this master processing unit. The slave processing unit is used to execute
the accumulation phase in parallel with the execution of the vote phase
carried out by the master processing unit. It consists of a 32-bit
floating-point processor and a simple controller. Executing the vote phase
and the accumulation phase--the two phases occupying a substantial portion
of the neural network simulation process--in parallel, using the master and
slave processing units in the pipelining mode, results in faster simulation.
After the vote phase and the accumulation phase are completed, the update
phase is executed by the master processing unit.

10

The activity degree of each node and the corresponding accumulated vote
value, obtained by adding up the vote values received from other nodes, are
entered in the node's activity table and accumulator table, respectively,
as 32-bit floating-point values. Information on the links between nodes is
entered in the fan-out table. The information comprises node addresses
(each node address consists of an 8-bit processor element identification
number and a 16-bit intraprocessor element address) and link weights (32-
bit floating-point values). Each processing unit can independently access
the activity table and the fan-out table during the vote phase and the
accumulator table during the accumulation phase. During the update phase,
both the accumulator table and the activity table must be referred to.
During this phase, the master processing unit can access the two tables
while the slave processing unit is inactive.

Each processor element has an I/O port connected to the inter-PE network and
uses it to exchange vote messages with other processor elements. The two
processing units incorporated in each processor element are connected by a
vote message bypass. The bypass is used to transfer vote messages on nodes
within the same processor element. The use of the bypass results in
reducing the traffic through the inter-PE network.

The activity table and the fan-out table have a combined capacity of 4 M
bytes; the accumulator table has a capacity of 256 K bytes. They enable the
corresponding processor element to simulate a neural network comprising up
to 64 K nodes and 440 K links. Each processor element can achieve a
processing speed of about 1 M links/s using its two processing units to
carry out parallel and pipeline processing.

Each of the master and slave processing units uses a 32-bit floating-point
operation unit that operates based on a 10-MHz (100 ns) clock. The
operation unit can perform multiplication and addition against one
instruction and is capable of pipeline processing at 100-ns intervals. The
memory used is a DRAM with an access time of 100 ns and a cycle time of
220 ns. Each processor element is capable of simulating a neural network
comprising up to 64 K nodes and 440 K links. When a processor element
simulates a neural network of the maximum size mentioned above, it takes the
following numbers of clocks to execute the three phases comprising one
simulation step:

• Vote phase: 3,648 K clocks
• Accumulation phase: 1,920 K clocks
• Update phase: 384 K clocks

Since the vote phase and the accumulation phase are executed concurrently,
the total number of clocks required to execute one simulation step becomes:

max[vote phase, accumulation phase] + update phase = 4,032 K clocks

Since one clock equals 100 ns and 1 K equals 1,024, the time required to
execute one simulation step is 413 ms. Therefore, the processing speed is
1 M (440 K/413 m) links/s.

11

7. Inter-PE Communications Network

During neural network simulation, such operations as data transfer,
simulation control by the host computer, processor element synchronization
and loading neural network data into processor elements are performed on a
message basis using the inter-PE communications network.

The message format is shown in Figure 7. The messages have a variable word
length (a word consists of 16 bits). Each message consists of a header
(1 word) and main parts (0-127 words). The header indicates the message
type, the message receiver address and the message length.

Header
Main
part 1

Main
part 2 • to

Main
part n

(n = 8-127)

Figure 7. Message Format

During a neural network simulation, vote values are transferred between
nodes using vote messages. The vote message format is shown in Figure 8.
A vote message must contain the information identifying the node that is to
receive the message and a vote value. The information identifying a node
in a neural network must contain the address of the processor element to
which the node has been assigned and the address in the processor element
of the node.

1st word 2d word 3d word

Header
Node
address

(1 6)

Vote value

PE
address

(7)

Message
length

(7)

Charac-
teristic

(8)

Mantissa
part

(8)

Figure 8. Vote Message Format

In a vote message, the header contains the processor element address. Since
a processor element takes care of up to 64 K nodes, the section used for
node address indication in a vote message comprises 16 bits. The vote value
is represented by a real number complying with the floating point format set
by IEEE. The IEEE format consists of a total of 32 bits, i.e., an 8-bit
characteristic and a 24-bit mantissa part. In neural network simulation,
the value precision is not very important. A neural network simulation
experimentally conducted by running a simulator on a LISP machine whose
mantissa for the vote messages had been reduced to 8 bits did not produce
any change in results. Therefore, of the 24-bit mantissa included in the
vote value section of each vote message, only the 8 high-order bits are

12

used, even though the processor element performs on a 32-bit basis. The
vote value section of the vote message consists of 16 bits, i.e., 8 bits
each for an exponent and a mantissa. With the mantissa reduced from 24 to
8 bits, the vote message section has been expanded to 3 words, resulting in
higher'message transfer speed. It is also possible to use 32-bit precision
vote messages to carry out simulation with higher precision.

The inter-PE communications network is a multistage link network comprised
of router cells. A router cell block diagram is shown in Figure 9. Each
router cell is a switch with two input ports, A and B, and two output ports,
X and Y. It contains four message buffers. Each port is 16 bits wide. The
messages received are entered in the buffers selected according to the
specified addresses. The buffer selection is controlled at the output ports
of the router cell during the preceding stage. A message coming through
input port A to be sent to output port Y, for example, is entered in the

buffer AY.

Each output port is provided with a multiplexer. The messages coming
through port A or B are advanced to an output port.

When a message exits an output port, it is input to an input buffer of the
next-stage router cell. During this process, the input buffer selection is

made by the output port.

P o.r t A

I RAXl

_v

P o.r t B

c

^C^
M u x X

-"IT-
Port X

IRBY

JL
M u x Y

P o r t Y

Figure 9. Router Cell

The router cell shown in Figure 9 can continue operation unless the two
buffers inputting messages to the two multiplexers are both empty. (Here,
it is assumed that the input buffers, to which the output ports of this
router cell are connected, of the next-stage router cell have not
overflowed. This assumption is proper as explained later.)

To enable a processor element to operate at a rate of 1 M links/s in
simulating a neural network, the router cells must handle three-word vote
messages to be exchanged between nodes at a rate of 2 M links/s. In other
words, each router cell must receive messages, on the average, every
microsecond, and output the messages received to the two output ports at the

13

same message density. The router cells are designed to be capable of
operating continuously without causing any buffer to overflow unless the
message density exceeds 1.5 messages//*s at each input port.

In the following, the message processing capacity of the router cell will
be analyzed. Assume that the messages received through each input port
constitute Poisson-type arrivals at an average rate of A messages/s), and
that each multiplexer performs an exponent-type service at an average rate
of fM (messages/s). Although, in reality, the processing time of a
multiplexer is almost constant (l//i), its service is assumed to be of an
exponent type here to avoid making the analysis too complicated. Analysis
based on this assumption produces more exact results than does that based
on the assumption that the multiplexer service is constant. Therefore,
adopting the above assumption regarding the multiplexer service guarantees
being on the safe side when conducting analysis.

When a message is input through an input port, it is entered on one of the
two buffers according to the destination address specified. Therefore, the
messages arriving at a buffer constitute Poisson A/2 (messages/s). Since
each multiplexer handles the messages output from two buffers, the message
processing capacity of a router cell can be analyzed through analyzing the
system shown in Figure 10.

JL.

T

Poisson-type
arrival

(A)

Exponent-type
service

(H)

Figure 10. Poisson-Type Arrival/Exponent-Type Service System

The system shown in Figure 10 is a typical queue system. The system
analysis results will be explained. When it is assumed that the traffic
density p = X/fi, the probability of the number of messages being n in the
system in a steady state is expressed as follows:

Pn (1 - P) Pn

If the number of messages exceeds n while the buffer length is n, not all
the messages can be entered in the buffer. The probability p1>n of the
buffer length exceeding n can be calculated as follows:

Pl>n - Pn + Pn+1 + • • •

- (l - p) p <n+1> EV
1-0

14

If
sp1» i/a-P)

1=0

is substituted into the above equation, the following result is obtained:

Pl>n - /n+1)

At the design stage, it is specified that A - 1 M (messages/s) and that
p - 1/0.6 M (messages/s). From this p - 0.6 and n - 512/3 (a buffer
consists of 512 words of 16 bits each and a simulation message comprises
3 words) - 170. The probability of the input buffer overflowing becomes:

Pi>i70 - P171 " 0.6171 - 1.9 x 10-38

Probability of this magnitude is negligible.

If A is 1.5 M (messages/s) and p is 0.9, the probability becomes:

Pi>i7o " Pin = 0.9171 - 1.5 x 10-8

Probability of this magnitude is also negligible.

Therefore, the router cell can perform message switching without causing
either buffer to overflow, even if it receives messages through both input
ports at a rate of 1.5 M (messages/s) each.

The processor elements are synchronized during every step by the use of
messages. The synchronization is achieved in the following way without
involving any special large-scale processing.

At the end of the vote phase of a simulation step, each processor element
outputs a synchronization message SYNC to the network, signaling to the
router cell that it has no more messages to be sent out in the current step

The SYNC message reaching the input port of the router cell is input to the
two input buffers connected to the input port. The messages subsequently
arriving at the input port should be vote messages issued during the
following step. When a multiplexer receives a SYNC message from one of the
two input buffers, it knows that no messages to be transferred during the
current simulation step are left in the input buffer, and continues
processing the messages coming from the other input buffer. When it
subsequently receives a SYNC message from the other input buffer, it outputs
a SYNC message from its output port to let the next-stage processor element
know that no messages remain for transferral during the current simulation
step.

When a processor element receives a SYNC message from the inter-PE network,
it knows that no more messages will be forwarded to it during the current
simulation step, and it terminates the accumulation phase. After
terminating the vote phase and the accumulation phase, it executes the

15

update phase. Upon completion of the update phase, it terminates the
current simulation step and then starts the next simulation step.

8. Conclusion

We have proposed a special simulation machine capable of simulating a large-
scale neural network at high speed. It is designed to perform parallel
processing using more than one processor element and utilizing the
parallelism characteristic of the neural network simulation algorithm, as
well as that of the neural network.

We intend to fabricate a simulator system incorporating four to eight
processor elements and to test it to verify the propriety of the
architecture. We also plan to develop a neural network programming
environment tightly coupled with the NeuMan on the host computer. The
neural network programming environment must contain a neural network
description language, a compiler, a neural network split loader, and a
monitor. Among them, the neural network description language, that must be
highly descriptive, and the neural network split loader assume particular
importance.

To enable the NeuMan to simulate a neural network with high efficiency, it
is necessary to split the neural network into partial networks, minimizing
the number of messages to be exchanged between processor elements. When the
neural network program is written in the neural network description
language, it is divided into function modules. The information used for
modularizing the program can be utilized in dividing the neural network.

References

1. Kajiwara and Tsuji, "Neural Network Inference System," material of the
knowledge engineering and artificial intelligence study section of the
Information Processing Society of Japan, 45-10 (1986).

2. Kajiwara, Nakada, and Koike, "Neural Network Simulator in Special
Parallel-Processing Machine MAN-YO," Text prepared for 35th national
meeting of the Information Processing Society of Japan, (1987).

20109/9365

16

Optically Connected 3-D VLSI Sorting Scheme

43067589b Tokyo KONPYUTA AKITEKUCHA SHINPOJIUMU RONBUNSHU in Japanese
17-18 May 88 pp 55-64

[Article by Makoto Hasegawa, College of Engineering, Shizuoka University,
and Susumu Horiguchi and Yoshiharu Shigei, Faculty of Engineering, Tohoku
University: "Sorting Scheme in Optically-Connected Three-Dimensional VLSI
Architecture"]

[Text] Abstract

Data totaling N in number can be sorted in time, T - 0(log2N), AT2 =
0(N log5N), VT3/2 - 0(N log4N), through the realization of bitonic sorting in
an optically-connected three-dimensional VLSI architecture. This
performance is superior to the theoretical limit value, Q (N2log N) , of the
area-time complexity (AT2) determined by Thompson for sorting in a two-
dimensional VLSI architecture.

The superior sorting performance indicated above is attributable to the
utilization of the freedom offered by the new dimension introduced in the
three-dimensional architecture.

It has become clear that the adoption of the three-dimensional VLSI
architecture may result in the realization of VLSI performance far superior,
with regard to some important problems, to that of two-dimensional VLSIs.
This potential of the three-dimensional VLSI architecture appears to suggest
that the efforts made to develop three-dimensional VLSIs will be adequately
rewarded.

1. Introduction

The greatness of the potential of the three-dimensional VLSI is being
increasingly recognized. This status is described well in the commentary
(KUR086) by Kurokawa, et al. A three-dimensional architecture allows more
flexible problem mapping than does a two-dimensional one. In this
connection, it has been known (HASE86) that the computational complexity of
FFT [fast Fourier transform] can be greatly reduced by adopting a properly
arranged three-dimensional system architecture. In this paper, the
computational complexity involved in sorting on a three-dimensional VLSI
will be studied, and it will be explained that a fine sorting performance

17

can be achieved using a three-dimensional VLSI architecture. The
introduction of VLSIs capable of sorting a large quantity of data at high
speeds is strongly desired. In the present situation involving the two-
dimensional VLSIs, however, it is difficult to realize a satisfactory
sorting performance using a realistic portion of the chip surface.

The introduction of VLSIs has made it possible to form digital systems on
chips, leading to substantial improvements in the operating speed of
semiconductor devices. However, inside the VLSI chips, the operating speed
is restrained due to the drive delay caused when long-distance wiring used
for wide-area communications are charged and discharged. In fact, a
significant portion of the VLSI chip surface is used for wiring (MUR082).

Such being the case, a competitive race toward the development of an
algorithm that would enable the above problem to be solved on a local
communications basis is under way. With regard to some problems, remarkable
achievement has already been made. However, as research in this area
progresses, it has come to be recognized that problems that can be solved
on a local communication basis are the exception and, moreover, that many
problems that exist whose efficient solutions appear to be fundamentally
dependent on wide-area communications. Furthermore, it has been found that
many important operations for which acceleration is urgently required
present problems such as those stated above. Among these operations, FFT
and sorting are typical.

To cope with the situation, it is necessary to devise a measure to improve
the efficiency of wide-area communications. A three-dimensional VLSI
architecture is a prime candidate for adoption as a means of realizing the
desired efficiency improvement.

In the following part of this article, it will be explained that data
totaling N in number can be sorted in time, T - 0(log2N), AT2 - 0(N log5N) ,
and VT3/2 - 0(N log4N) , through the realization of bitonic sorting in an
optically connected three-dimensional VLSI architecture. These results are
better than the theoretical limit value, Q (N2log N), of the area-time
complexity (AT2) determined by Thompson for a two-dimensional VLSI system.

It also signifies that, when based on the performance of a single processor,
the system performance may be enhanced by more than N times when using N
times as many resources. This possibility is due to the additional
dimension introduced as a result of the adoption of a three-dimensional
architecture. The freedom in the new dimension can be advantageously
utilized (needless to say, this does not refer to the superlinearity within
the same system) . As far as we know, the FFT (HASE86) and sorting (HASE86B)
operations performed on three-dimensional VLSI systems are the first
examples in which the above-stated possibility has been materialized.

2. Bitonic Sorting

The sorting algorithm adopted for the present system is bitonic sorting.
This sorting method was originally devised by Batcher (BATC68). However,
the present discussion will be advanced based on the bitonic sorting studies

18

made by Stone (ST0N71) and Knuth (KNUT73). In this article, a bitonic
sequence refers to a composite sequence formed by joining two sequences of
the same length--one of ascending order and the other of descending order.
When a sequence {a1(a2 a^, a„ a2n) is a bitonic sequence
satisfying the relationship of ax < a2 < ... < a„, a„+1 > a,^ > ... > a2n, the
two sequences generated by applying the operations MINi - min(aif a^) and
MAXi - max^^a^) to the sequence realize the following relationships:

(I) The new sequences generated, {MIN1(MIN2 MINn} and
{MAXi.MAXjj,MAXJ , are both bitonic.

(II) Any element of the sequence {MAX^MAXj, MAXJ is greater than any
element of the sequence {MIN1(MIN2, . . . ,MINn}.

Therefore, the original bitonic sequence can be sorted by recursively
applying the above operations, 0(log N) times, to the partial bitonic
sequence equal to one-half of the original bitonic sequence. With regard
to the unit of operation in this case, it is enough if, for the target
bitonic sequence with a length of m, compare - exchange operations can be
performed between the sequence elements arranged m/2 apart (Figure 1).

Figure 1. Bitonic Sorting Procedure

Figure 2 shows the flow of signals in bitonic sorting performed for eight
inputs. The squares in Figure 2 represent compare-exchange units. The two
inputs shown on the left-hand side of each compare-exchange unit are output
to the two output terminals on the right-hand side of the unit after being
rearranged in the direction of the arrow shown in the square according to
a comparison of their values performed in the compare-exchange unit.

Figure 2. Signal Flow in Bitonic Sorting

3. System Structure

First, efficient sorting is dependent on wide-area communications. As long
as it'is based on a two-dimensional VLSI architecture, it is subjected to
the drive delay resulting from the use of long-distance wiring.

Now, a system structure that can realize a sorter for N inputs will be
discussed based on the signal flow shown in Figure 2. The system comprises

19

the processing stages for executing compare-exchange operations. The
processing stages total 0(log N) in number and are sequentially arranged.
They are optically connected through identical path-length networks
(Figure 3). Each processing stage is equivalent in function to a processing
row shown in Figure 2. It includes independent compare-exchange elements,
totaling N in number, that operate in parallel. The inputs are given from
the left-hand side, as viewed based on Figure 3, and the final output is
obtained on the right-hand side.

(a) Conceptual
structure

1st STAGE 2nd STAGE 3rd STAGE 4th STAGE Eth STAGE

(b) Pattern of stage connections in identical-path-length network

Figure 3. Sorting System Structure on Three-Dimensional
VLSI Architecture

Identical-path-length network

The processing stage connection network adopted for this system is an
identical-path-length network (HASE86b). In the identical-path-length
network, the path length between any two points connected during the same
processing stage is constant. In this network, optical signals are used as
communication media in the connection stage. The path connecting any two
nodes is not blocked by any other path connecting other nodes. Therefore,
in this network, such optical elements as optical waveguides, free space,
and transparent flat plates may be used arbitrarily.

Since the signals propagated along different paths in this network are free
from interference, two or more data streams can exist in parallel in the
same network if it is physically feasible to produce the data streams. In
addition, in this network, it is permitted to transmit one bit of data along
a path as soon as the transmission of the preceding bit of data is completed
on the same path. Therefore, two or more bits of data may exist
concurrently, arranged in the order of transmission, along the same path.
Each node in each processing stage can compare, exchange and transmit, i.e. ,
it compares the two signals received from two nodes of the preceding

20

processing stage via the connection stage, orders them according to the
comparison results and transmits them to the corresponding nodes of the next
stage. Each processing stage contains compare-exchange nodes totaling N in
number. All the nodes operate in parallel.

Processing Stage Structure

Each compare-exchange element included in each processing stage is composed
of a photo detector layer, a compare-exchange layer, and a light emitter
layer (Figure 4). In the light emitter layer, the optical signals received
from the preceding stage are converted into electric signals and are sent
to the compare-exchange layer. The results of the signal comparison
conducted in the compare-exchange layer are converted into optical signals
in the light emitter layer and are output to the next stage. Each
processing stage constitutes an array comprised of compare - exchange elements
totaling N in number and is capable of parallel operation. Physically, this
array can be formed as a three-dimensional VLSI consisting of three layers,
i.e. , a photo detector layer, a processing layer, and a light emitter layer.
We have decided to study the structure in which each operation stage has an
array of compare-exchange elements like the one described above and
connection stages are stacked alternately.

Q/H-ARRAY W"*?!!LT1C Q/R-ARRAY
LAYER LATE* LAYER

Figure 4. Processing Stage Structure

4. Evaluation Criteria

In this section, the volume performance advocated by Rosenberg (ROSE83) will
be discussed, in addition to the time computation complexity and the area-
time performance. The volume performance is a concept expressing the cost
of the operation performed, using a uniform material, according to the
amount of the material used. It can be said of the evaluation criteria in
general use today that more discussion will be required to determine a
definition of the time performance in order to express the processing
capacity of a system and the criteria for assessing the problems related to
the new type of three-dimensional architecture, which is somewhat different
from the conventional three-dimensional IC architecture.

21

As a yardstick of the difficulty encountered in realizing an algorithm, the
area evaluation appears more appropriate than the volume performance. As
an index of the final product cost, the volume evaluation--a material cost
indicator--will be effective when an adequate yield can be secured (HIBI86).

It will be explained later that the three-dimensional VLSI architecture has
proven superior to the two-dimensional VLSI architecture, no matter which
evaluation criterion in use today is used in comparing the two.

5. Hypotheses for Optically Connected VLSI Models

The hypotheses set for conducting the time and area performance evaluation
of optically connected VLSI models will be explained.

Hypothesis 01: Data transfer rate (optical connection system)

The transfer of 1 bit of data along an optical propagation path
requires a unit length of time.

The above hypothesis holds if an adequate length of data is to be bit-
serially transferred using a pipelined drive circuit for the electrooptic
converter.

Hypothesis 02: Drive delay in optical connection

The attenuation along the optical propagation paths running where
circuit elements are optically connected is adequately low and the
distance-dependent drive delay is negligible.

This hypothesis can be true when low-loss optical waveguides or free space
can be used as optical communications channels.

If the rate of attenuation along the optical propagation paths is not
adequately low, then it is necessary to take into account the drive delay
0(L) for propagation distance L (HASE87).

Hypothesis 03: Propagation delay in optical connection

The propagation delay to the limitation of the light velocity is
negligible.

In wire-connected VLSI models, the time required for information transfer
itself (propagation delay) has been regarded as negligible (it may be more
appropriate to say that the propagation delay has not even been taken into
consideration). Since this analysis is aimed at comparing different
systems, the propagation delay is also regarded as negligible for optically-
connected three-dimensional VLSIs.

22

6. Results Obtained for Wire-Connected Two-Dimensional VLSIs

For the purpose of comparison with the optically-connected three-dimensional
VLSI architecture, the computational complexity, determined by Thompson, of
sorting in a wire-connected two-dimensional VLSI architecture will be shown
first. Then, the extent to which it is affected by the current density
limitations pointed out by Card will be discussed briefly.

6.1 Results Obtained by Thompson

(Theoretical lower limit value of area-time complexity (AT2))

Thompson previously reported (THOM80) that, with regard to the (area*time2)
performance in the sorting of data totaling N in number, ft (N2log2N) was the
best solution available. According to his latest research results (THOM83),
the theoretical lower limit value is ft (N2log N).

(Sorting in shuffle-connected system)

Bitonic sorting in a shuffle-connected system can be realized at
T - 0(log3N), A - 0(n2/log2N), AT2 - 0(N2log*N) . (THOM83)

(Sorting in mesh-connected system)

Sorting in a mesh-connected system can be realized at T - 0(N),
A = 0(N log2N), AT2 - 0(N2log2N). (THOM83)

6.2 Card's Theorem (CARD86) and Its Effect

The theoretical lower limit value determined by Thompson is based on Mead's
report (Mead82) (Mead80) that the delay time involved in driving a wiring
with length L could be reduced to 0(log L) using an exponent-type driver.
However, Card pointed out (Card86) that, since the current density along the
wiring on contemporary VLSIs is already close to the threshold value causing
electromigration, the adoptability of an exponent-type driver designed to
enable as large a current as desired to flow through the wiring was
problematical. When this is taken into consideration the drive delay in a
wiring with length L should be as follows:

(Theorem 1) In an arbitrary VLSI layout, the delay caused in charging
and discharging with length L is 0(L). (CARD86)

The ways in which two representative methods of sorting on VLSIs will be
affected by the restrictive condition given by the above theorem will be
discussed next.

(Sorting in mesh-connected system at limit current density)

Bitonic sorting can be performed at 0(log3N) when the current density limit
does not need to be considered in performing the compare-exchange steps.
Between compare-exchange steps, a 0(N1/2) step is required in performing the

23

data transfer in preparation for the next operation. The overall delay time
involved in sorting is 0(N1/2).

However, when it is necessary to consider the current density limit, a
problem arises in connection with the driving of wiring between processors.
Since the wiring length is 0(log N), the routing time per stage should be
estimated at 0(log N). The area-time complexity under these conditions is
as follows:

Sorting in mesh-connected system at limit current density:

A - 0(N log2N), T - 0(N1/2log N) , AT - 0(N2log*N).

(Sorting in shuffle-connected system at limit current density)

In a shuffle exchange connected system, the maximum wiring length between
operation stages is 0(N/log N). Therefore, the routing delay in the
connection network is 0(N log N). Therefore, the complexity becomes:

Sorting in shuffle-connected system at limit current density:

A - 0(N2log2N), T - 0(N log N) , AT2 - 0(N*).

When the current density limit must be taken into consideration, sorting in
a mesh-connected system can be executed at higher speed than can that in a
shuffle-connected system.

7. Performance Evaluation

(Pipeline-type bit-serial compare-exchange unit)

A bit-serial compare-exchange unit capable of pipeline operation for the
execution of bitonic sorting in the three-dimensional system discussed here
can be realized as follows: number of gates - 0(1), area A - 0(1) and delay
T = 0(1). This unit constitutes a module with bit-serial input terminals
corresponding to two input streams, a and b, and two output terminals
corresponding to the two outputs--max(a.b) and min(a,b). The data formats
of the input and output data streams are represented by serial bit strings.
The heading bit of each of the serial bit strings is called the most
significant bit (MSB). The comparison, exchange, and transmission
operations to be performed to execute bitonic sorting will be discussed
next. The data words must be input bit-serially, with the highest-order bit
leading the way. Each compare - exchange unit must be capable of comparing
two input values and changing their output direction according to the
results of the comparison within the unit length of time per bit. During
the time between when the input of data from two input data streams to a
compare-exchange unit is started and when the first unmatched pair of bits
is received by the compare-exchange unit, the compare-exchange unit copies
the bits input from both streams and outputs the copied bits. When the
first unmatched pair of bits is received, the compare - exchange unit compares
them to determine which bit is larger, and changes the output direction
according to the results of the comparison. Once it changes their output

24

direction, the compare-exchange unit does not change the output direction
again until the data words are finished. Until the data output direction
is changed for the pair of input streams, the values output from the
compare-exchange unit are always identical for the two output terminals
(even though the data output from the two output terminals are from
different sources). Therefore, as far as the data values are concerned, the
compare-exchange unit can perform the data comparison and exchange in the

manner described above.

If the above-described operation is performed during every operation cycle
for every bit of data, the minimum cycle time is the time required to
compare two bits of data and to change their output direction. When this
method is used, it is possible to generate 1 bit of output data every unit

of time.

 ——►•.
 ►::
ltmine«'::

1818181 le'ftl

it
limmaBr

ieieiei\ee

111111*188"

leieiBiiee

miixjiee

leieiBiiee^
w

(a) Compare-exchange unit

INPUT _ „ r-. ^ ^ OUJPUI

Ml BTjTXHXHATtV^CZ

(b) Data passage

Figure 5. Pipelining Using Bit-Serial Compare-Exchange Units

If the possibility exists that the routing time will vary with the route in
the connection network, it is necessary to enter each pair of bit streams

25

received from the preceding stage into buffers and then to input them to the
corresponding compare-exchange unit, in order, beginning with the leading
bits, while maintaining synchronism between the two input data streams. The
necessity of providing for absorbing the skew in this case limits the
sorting performance.

Unlike the above system, the sorting system we have devised incorporates an
identical-path-length routing network so that no problems develop from the
signal skew between input data streams. In this system, the two input data
streams may be regarded as being kept in perfect synchronism. In this
sense, the identical-path-length routing network assumes fundamental
importance to this sorting system.

Routing Time Requirement

From the foregoing hypotheses, the time required for routing in an
identical-path-length network can be established at 0(1). In bit-serial
data transfer, as hypothesized, a data word comprising 0(log N) bits takes
time 0(log N) to pass through the network. However, since the propagation
delay in the network is 0(1), and both the compare-exchange units and the
routing network participate in pipeline operation in the present sorting
system, the time required for routing does not exceed the time taken by the
lead signal in moving from the input end to the output end of the network,
i.e. 0(1).

From the above, in each processing stage, one operation unit can be executed
using bit-serial compare-exchange units totaling N in number (area: 0(1))
and taking time 0(1). The time taken to transfer the data input to the
connection network to the next stage is 0(1) if the light velocity is high
enough to make the propagation delay negligible. When this process is
repeated for stages totaling 0(log2N), the total area requirement is
0(N log2N) , the total time requirement is 0(log2N) and the output period is
0(log N). When the present sorting system is evaluated by Thompson's
criteria (THOM83), the time computational complexity is Td - 0(log

5N) and the
area computational complexity is Ad - 0(N log N). The area-time
computational complexity is ATd

2 - 0(N log5N). This value suggests the
possibility for great performance improvement, in light of the fact that the
area-time computational complexity determined by Thompson for two-
dimensional VLSIs is ATd

2 - ß (N2log N) .

Many differences of opinion may be expressed when determining what
quantities should be used when comparing two-dimensional and three-
dimensional VLSIs. Rosenberg (ROSE83) has determined that the evaluation
quantity for three-dimensional VLSIs, corresponding to AT2 for two-
dimensional VLSIs, is VT3/2. If this theory is followed, VTd

3/2 =
0 (N log*N). Not that, since the present sorting system can handle instances
totaling 0 (log N) simultaneously, the volume per instance,
Vd - 0(N log N), has been applied here.

Bitonic sorting in a mesh-connected network is a nearly ideal sorting method
that can be used without occupying an unrealistically large area on a two-
dimensional VLSI. Its area performance is A - 0(N log2N) , time performance

26

is Td - 0(N2) and area-time performance is ATd
2 - 0(N2log2N). The superiority

of the present sorting method is obvious from these figures, too.

A summary of the above discussion appears in Table 1. The time performance
of sorting on wire-connected two-dimensional VLSIs has been evaluated based
on the assumption that the drive delay for a path length L is T - 0(L).
Recent study results, however, indicate with increasing clarity (CARD86)
that it is extremely difficult to make the cost of practical wide-area
communications (drive delay) smaller than T - 0(L). As a result, it has
become necessary to review the area-time evaluation so far referred to of
sorting on a two-dimensional VLSI. This point is only partly reflected in
Table 1. When this point is taken fully into account, the advantages of
sorting on a three-dimensional VLSI over those of sorting on a two-
dimensional VLSI will be better recognized.

Table 1. Area-Time Performance of Various Sorting Methods
Area effi- Time effi-

Sortinp method ciencv (Ad) ciencv (T^)— Ala2. Source

Bitonic sorting on
optically-connected
three-dimensional VLSI
(Volume evaluation) Vd: N log N
(Area evaluation) N log N

Theoretical lower limit
(for two-dimensional
VLSI)

<When current density
is limited>
N-proc.bitonic.Mesh N log2N
N-proc.bitonic.S-E N2/log2N

<When current density
need not be considered>
N-proc.bitonic.Mesh
N-proc.bitonic.S-E
Single processor

N log2N
N2/log2N

log N

log2N
log2N

N1/2log N
N log N

N

Ni/2

log3N
log2N

VT3/2: N logAN
N log5N

fl (N2log N) (TH0M81)

Nzlog"N
N*

N2log2N (THOM83)
N2logAN (THOM83)
N2log5N (THOM83)

8. Discussion of Realization of Proposed Sorting Scheme

Bitonic sorting in a three-dimensional VLSI architecture has been discussed
without giving much consideration to its feasibility. In this section, how
the sorting will be realized is discussed by taking into consideration the
device techniques that are likely to become available in the near future
(HASE86b). From the viewpoint of design elegance, a device structure in
which compare-exchange processing stages and connection stages are
alternately stacked in the order in which they are passed by signals seems
attractive. Materialization of this device structure requires a technique
that would enable the formation of a three-dimensional VLSI consisting of

27

numerous active element layers. When two or more element layers are put
together to form an integrated device, layers stacked later are likely to
exhibit sharply higher defect ratios. With the device techniques presently
available, it is extremely difficult to overcome this problem. Even if
three-dimensional VLSIs, as described above, can be fabricated, they may
pose problems with regard to heat radiation and production yields.
Fortunately, the optical connection stage is required only as a medium, so
it does not need to be an integral part of the three-dimensional VLSI from
the beginning. This point constitutes a fundamental difference between the
optically connected VLSI and the wire-connected VLSI. It is possible to
fabricate processing stages with a compare-exchange function and an optical
input-output function, with optical connection stages to be used separately
as a communications medium, then test them and put together only those that
have passed the performance test. Separate preparation of different parts
with different functions will result in higher production yields and,
eventually, in a much lower defect ratio during the final assembly stage.
Chips may be compared in terms of the total active-region area. In a well-
known method of rough evaluation, if chips, each with an area of A, have
defects totaling, on the average, N per unit area, the probability P0 at
which defectless chips are found among them is given as

P0(NA) - e -NA

i.e., when the area exceeds a certain value, the yield starts dropping
sharply. The system being discussed here will, when materialized,
constitute a large-scale device with a marginal (if assessed based on the
present technology level) integration density. Therefore, the above-
described approach in which the processing stage and optical connection
stage are prepared separately will produce an effect that cannot be ignored.

IDENTICAL PATH LENQTH
ROUTING NETWORK

HEAT-SINK COMPARE EXCHANGE CELL

IDENTICAL PATH LENGTH
'•ROUTING NETWORK

Figure 6. Possible System Structure

Any actual attempt to fabricate this system will encounter many more
problems. Since the system includes many elements that generate a large
amount of heat, devising an efficient heat radiation measure may become a
major hurdle to be cleared. A possible solution to the problem is to slice
the active layer of each processing stage of the system perpendicularly to
the direction of the signal flow and sandwich a heat sink, made of a
beryllia-based ceramic and with high heat conductivity, between the slices.

28

It will be possible to develop a technique to materialize this structure by
modifying the existing multichip carrier mounting technique. An
electrooptical converter element may be attached to each end of each slice
carrying compare-exchange cells, thereby making up a basic component unit
of the processing stage. The processing stage may comprise a desired number
of slices.

9. Conclusion

Three-dimensional VLSIs should not merely be substitutes for two-dimensional
VLSIs for use when the integration density can no longer be raised for the
two-dimensional VLSIs. The introduction of three-dimensional VLSIs can lead
the way to a totally new area. Even though the general computation capacity
of three-dimensional VLSIs has not been evaluated, it has become
increasingly clear that three-dimensional VLSIs may far exceed the two-
dimensional ones with respect to some important aspects of their operation.
This seems to suggest that the efforts devoted to the development of three-
dimensional VLSIs will be adequately rewarded.

References

[BILA84] G. Bilardi and F.P. Preparata, "An Architecture for Bitonic
Sorting with Optimal VLSI Performance," IEEE TRANS. COMPT., Vol C-33,
No 7, July 1984, pp 646-651.

[CARD86] H.C. Card, W. Pries, and R.D. McLeod, "Contributions to VLSI
Computational Complexity Theory From Bounds on Current Density,"
INTEGRATION, Vol 4, No 2, June 1986, pp 175-183.

[DOHI82] Y. Dohi, A. Suzuki, W. Matsui, "Hardware Sorter and Its
Application To Database Machine," Proc. 9th Int'l Symp. Comput. Arch.,
pp 218-225.

[HASE86b) M. Hasegawa and Y. Shigei, "Sorting on Optically-Connected
Three-Dimensional VLSI," the Information Processing Society of Japan,
study report 86-CA-63-aa, 1986, pp 99-107.

[HASE87] Ibid., "Tradeoffs Regarding Drive Delay Time Between
Optically-Connected Communications and Wire-Connected Communications
on VLSIs," JOURNAL OF THE INFORMATION PROCESSING SOCIETY OF JAPAN, Vol
J70-D, No 3, 1987, pp 650-651.

[HIBI86] Information provided by Y. Hibino of NTT.

[KNUT73] D.E. Knuth, "The Art of Computer Programming," Vol 3: Sorting and
Searching. Reading, MA: Addison-Wesley, 1973.

[KUR086] K. Kurokawa and H. Aiiso, "Three-Dimensional ICs," J0H0SH0RI, Vol
27, No 7, July 1986, pp 718-729.

[MEAD82] C. Mead and M. Rem, "Minimum Propagation Delays in VLSI," IEEE J.
SOLID-STATE CIRCUITS, Vol SC-17 No 4, August 1982, pp 773-775.

29

[MUR082] S. Muroga, "VLSI System Design," John Wiley, 1982.

[M0RA79] H.P. Moravec, "Fully Interconnecting Multiple Computers With
Pipelined Sorting Nets," IEEE TRANS. COMP., Vol C-28, No 10, October
1979, pp 795-798.

[ROSE83] A.L. Rosenberg, "Three-Dimensional VLSI: A Case Study," J. ACM.,
Vol 30, No 3, July 1983, pp 397-416.

[ST0N71] H. Stone, "Parallel Processing With the Perfect Shuffle," IEEE
TRANS. COMPUT., Vol C-29, February 1971, pp 153-161.

[TH0M77] CD. Thompson and H.T. Kung, "Sorting on a Mesh-Connected Parallel
Computer," C. ACM., Vol 20, April 1977, pp 263-271.

[THOM80] CD. Thompson, "A Complexity Theory for VLSI," PhD dissertation,
Carnegie-Mellon University, August 1980.

[TH0M83] Ibid., "The VLSI Complexity of Sorting," IEEE TRANS. COMP., Vol
C-32 No 12, December 1983, pp 1171-1183.

[VUIL83] J. Vuillemin, "A Combinational Limit to the Computing Power of
VLSI Circuits," IEEE TRANS. COMP., Vol C-32, No 3, March 1983, pp 294-
300.

20109/9365

30

Tabular List Representation Oriented Machine

43067589c Tokyo KONPYUTA AKITEKUCHA SHINPOJIUMU RONBUNSHU in Japanese
17-18 May 88 pp 89-97

[Article by Ryoichi Wada, Yutaka Aoki, and Masato Honma, Information System
Laboratory, Matsushita Electric Industrial Co., Ltd.: "Architecture of
Symbol Processing Machine ATOM Designed for High-Speed List Pattern
Matching"]

[Text] In representing a list, the ATOM (a tabular list representation
oriented machine) uses a set of leaf data distributed in a tree structure
whose end nodes indicate the absolute-location node addresses on the tree,
the ATOM processes the leaf data using more than one processor in parallel,
making itself capable of handling lists at high speed, in particular, in
relational operations. The results of simulations carried out using sample
programs have indicated that the ATOM may be able to execute production
systems more than 10 times as fast as the conventional machines. This paper
deals with the new method of internal list representation, how to process
the list representation, the structure of the ATOM, and the results of
simulations.

1. Introduction

It is characteristic of the programs used in the field of artificial
intelligence to employ a list structure for data, with many of the control
structures adopted being of the data drive type.

The use of a data drive-type control structure signifies that a lot of
pattern matching is carried out during program execution. In fact, it is
well known that pattern matching constitutes a major cause of bottlenecking
during program execution in this field.1

An explanation of the bottlenecking is as follows: List data is stored in
memory in the form of list cells. When lists are compared, all the elements
of the corresponding end nodes must be accessed. To perform this process,
it is necessary to trace the lists progressively. These procedures cause
bottlenecking in memory access.

A processing system designed to make the above-mentioned list tracing easier
has been developed. It furthers CDR coding and completely converts the
lists to be processed into sequences.2 One of its drawbacks is that, when

31

processing lists for other purposes than matching, the lists must be
converted into an ordinary type.

When the data to be processed consists of more than one element that must
be processed in the same manner as list comparison, the processing time can
be shortened through parallel processing. However, if, as in the case of
list cell representation, the relationships among the elements making up the
data are indicated on a relative location basis, it is necessary to access
the elements sequentially. In this case, parallel processing is
impractical.

The symbol processing machine ATOM is designed to be capable of processing
lists at high speed. It uses a tree structure whose end nodes include
elements indicating the node addresses, i.e., the absolute addresses in the
tree structure. It represents lists using sets of leaf data of the tree
structure. It has a structure of the SIMD-type, adopted with attention
given to the leaf data independence in a tree structure. The SIMD-type
structure enables the leaf data to be processed in parallel using more than
one processor. In representing lists, the ATOM retains the semantic
attributes of the lists so that they can be processed as they are. This is
a characteristic of the list representation made by the ATOM.

According to Pleszkun, et al.,7 the list representation made by the ATOM is
identified with structure-coded list representation. As stated in the
reference literature (7), the structure-coded representation permits high-
speed access to lists. Therefore, the ATOM also enables high-speed list
accessing. In addition, it efficiently supports pattern matching. Up to
now, the utilization of the structure-coded representation for LISP machines
has not been studied much.7 The ATOM has not been developed as a LISP
machine, but it will become the first real machine to have the capability
of list representation introduced above.

In Section 2 of this article, the above-mentioned new type of list
representation will be explained. In Section 3, the architecture of the
ATOM will be described. Section 4 will deal with the list processing system
of the ATOM. In Section 5, the results of simulations will be discussed.

2. List Representation

In the ATOM, a list is represented by a set of leaf data. The leaf data
referred to here comprises the element included in an end node to which a
node address in the tree structure has been added.

<list-data> ::- {<leaf-data>*}
<leaf-data> ::- <node-address>

<atom>

The node address is represented in a vector. When an expression S is
represented using a multilevel tree, as shown in Figure 1, the data
representing it comprises numbers extracted from different levels of the
tree and arranged in ascending level order. Each level of the tree is
assigned consecutive numbers arranged in ascending order from left to right.

32

Take a list comprising

(A (B (C)) D),

for example. It is represented by data,

{ [1]A [2 1]B [2 2 1]C [3]D }

A characteristic of this list representation is that each piece of leaf data
is highly independent. This is because, in this list representation, each
piece of data has information regarding its own absolute location in the
tree structure. Therefore, this list representation is not dependent on the
order of the leaf data. For example, the above list can also be written as
shown below.

{ [2 1]B [2 2 1]C [3]D [1]A }

It is possible to interpret this list representation as representing a list
in the form of a table of node addresses and elements. In this article, the
list representation by the ATOM will subsequently be referred to as the
tabular list representation.3

Figure 1. Node Addresses of Leaf Data

The ATOM has a structure incorporating more than one processor to process
leaf data (entries in a tabular list representation) in parallel. Since the
leaf data have the above-described properties, they can be processed in
parallel.

To actually enable the parallel processing of leaf data to occur, it is
necessary to set such specifications as the number of leaf data to be
processed in parallel and the number of node address bits. According to the
analysis of some typical application programs, of the lists that became the
objects of processing, those with a length of 255 or more, a depth of 8 or
more and 64 or more leaves accounted for 5 percent or less.

Based on the above results, we have set the number of leaf data processes
at 64, the node address vector length at 8, and the number size at 8 bits.

33

A multilevel tree corresponding to the list example above is shown in
Figure 2 along with the corresponding tabular list representation. The
contents of the address part of the table shown in Figure 2 constitute node
address vectors. The size "8 bits x 8" defines the maximum number of
subnodes a node can hold and the maximum depth of lists that can be
processed. The number of entries in the table, up to 64, corresponds to the
maximum number of atoms that can be included in a table. A list that does
not comply with these restrictions is treated as an exception to be divided
into sublists for exceptional processing.

(A (B (CJ) D)

/ W3
A. K u

\22 H \ ~
21 \?

C

8bit

&

1 0 0 0 0 0 0 0 A

2 1 0 0 0 0 0 0 B
2 2 1 0 0 0 0 0 C
3 0 0 0 0 0 0 0 D

\, \/ \
b

ADDRESS VALUE

Figure 2. Tabular List Representation Example

3. Structure of ATOM

As shown in Figure 3, the ATOM consists of one DOU (data operation unit) and
more than one SOU (structure operation unit). In the ATOM, it is only the
DOU that reads instructions and operates under self-control. The SOUs
operate only concomitantly with the DOU. The DOU, like an ordinary
computer, consists of a microprogram-type controller, a memory, registers
used for data processing, and an ALU (arithmetic and logic unit). Ill
addition, it has an interface for use in exchanging data with the SOUs. The
SOUs have identical structures, mainly comprised of a leaf memory for
storing leaf data, registers, an ALU, an M flag used in the matching
operation, an E flag used to indicate that the SOU has no leaf data, and
other flags used to indicate the results of operations performed by the ALU.

DOU
REGlStER

TTTT
CONTROLLER

128 -e—
DAT« «US

SOU #1 SOU
FLAG REGISTER

ALU

LEAF
HEHORT

»8 SOU

FLAG
0
ID

KEG I STEH

ALU

LEAf
HEHORT

CONTROL »US

32 ADDRESS SUS

Figure 3. Block Diagram of ATOM

34

»84
FLAG

E

REGISTER

ALU

LEAF
HEHORT

Each word of the data stored in the DOU consists of 40 bits as shown in
Figure 4. Of the 40 bits, the high-order 8 bits constitute a data tag and
the remaining 32 bits carry actual data. For an atom, the data part
contains a pointer or a data value. For a list, it contains an address in
the SOU's leaf memory where leaf data included in the list are stored. A
set of leaf data making up a list is stored at the same addresses in the
leaf memories of different SOUs.

»bit 32bi t

< ? ?■■" -

TAG DATA

LIST e LEAF MEMORY ADDRESS

ATOM i VALUE

Figure 4. Data Stored in DOU

DOU SH0V ■*•"
3t-

KR C

SA

IHA SF

S0U1

s* ^k.

u

S0U2

«A U/

p L2

Figure 5. Execution of SMOV Instruction

Figure 5 illustrates the execution of an SMOV instruction issued to transfer
data. In the example shown in Figure 5, list data is transferred from the
memory to registers. The registers of each SOU are related to specific
registers of the DOU. When list data are read from leaf memories, they are
stored in SOU registers. The operation performed when an SMOV instruction
is executed differs according to whether the target data is an atom or a
list. When it is a list, in addition to the DOU operation, the SOUs are
also operated as described above. In this case, first the 40 bits of data
at the effective address given by the SMOV instruction is read from the DOU
memory. Then, in the DOU, the data tag is checked to determine whether the
data read out is list data. If it is found to be list data, the DOU sends
out the low-order 32 bits of the data to the memory address bus connected
to the SOUs. Each SOU then transfers the leaf data stored at the specified

35

address of its leaf memory to its registers. In this way, all the leaf data
making up a list are transferred to registers of all the SOUs at the same
time. Subsequently, the SOU registers to which the leaf data have been
transferred are kept interlocked with the corresponding DOU registers. In
other words, normally in the ATOM, once the list data are loaded in the
registers, the entire list can be processed. The leaf data composition in
each SOU is shown in Figure 6. The value part consisting of 40 bits is
identical with that of the data composition in the DOU, but the leaf data
does not contain list data.

/—
UDOKESS 14 >i t fALUE 4» bi t _

y
IAO OAT*

ie* *
Mait SZbi • «M

Figure 6. Leaf Data Composition in SOU

The DOU and the SOUs are connected by a 128-bit wide data bus through which
leaf data are transferred. This data bus is used, for example, to merge
leaf data to link lists or to bring specific leaf data into the DOU.

Selection Trap
Classification Instruction examples condition condition

Leaf processing
List move SMOV, SPUSH, SPOP No No
Leaf move GET LF Yes No
Leaf merge MERGE, APND No No
Leaf delete DEL-LF Yes No
Node address ADD TAD,SUB_TAD,SHD_AD Yes Yes

operation

Matching
Leaf matching MCH LF Yes Yes
Node address MCH AD Yes Yes
matching

Element matching MCH_VL Yes Yes

Table 1 lists some of the instructions included in the instruction set used
by the ATOM in performing various list processing operations. As shown in
Table 1, some of the instructions listed permit a selection or trap
condition to be specified. A selection condition, if specified, causes only
the selected leaf data to be processed. To specify it, the earlier-
mentioned M flags of the SOUs or the ALU flags are used. A trap condition
can be specified in the same way as a selection condition can. It is used
to delete leaf data after the execution of an instruction.

36

4. List Processing

In this section, the principal list processing operations performed by the
ATOM will be explained.

(1) Basic list operation

The basic list operation, such as car, cdr, and cons, can be performed by
properly combining leaf-data node address processing, specific leaf-data
deletion and leaf-data merging. The cdr operation, for example, for the
previously mentioned list (A (B (C)) D) can be performed as shown
below.

cdr({ [1]A [2 1]B [2 2 1]C [3]D })
- { [0]A [1 1]B [1 2 1]C [2]D }
- { [1 1]B [1 2 1]C [2]D }

In this operation, 1 is subtracted from the heading number of the node
address vector for every item of leaf-data, and the leaf-data corresponding
to the node address vector that becomes 0 following the subtraction is
deleted.

1 SMOV SA, X
2 SUB TAD TZR SA,1

9

ALU SA

9

©

IIIIIIII

9

1 1 ALU SA

©

IIIIIIII

9

K3

©

ninui

ffinm

9

' I ALU SA C

__±_

9

Figure 7. cdr Operation

The processing actually performed in each SOU during the above operation is
illustrated in Figure 7. During the process marked 2 in Figure 7, the two
operational steps described above are performed simultaneously against the
leaf-data stored in the SA register. The leaf-data whose node address
vector becomes 0 following subtracted of 1 is trapped and deleted (the trap
condition mentioned in Section 3 has been specified). More specifically,
the E flag of the specific SOU is set, indicating that the SOU has become
empty. As indicated in Table 1, the trap condition can be specified for
all the node address operation instructions and also for the match
instructions explained later. The SOU having its E flag set does not
operate. It is treated as if it stores no data.

37

As mentioned above, in the DOU, the list and atom data are represented
differently. Therefore, when list processing produces atom data, it becomes
necessary to change the data format in the DOU. The car operation for the
list (A(B(C))D)is performed as shown below.

car ({ [1]A [2 1]B [2 2 1]C [3]D })
- SHIFT_UP_ADDRESS({ [1]A }) - { []A }

In the above operation, a node address shift-up (the heading data is deleted
from the node address vector, reducing the leaf-data depth by one level)
occurs and, as a result, only one piece of leaf-data, without any node
address, is obtained. In the above case, it becomes necessary to change the
data format in the DOU as previously mentioned. The data format is
automatically changed via the SOU interface (SF) in the DOU. More
specifically, when an element produced as a result of an operation loses its
node address, the SF detects it through hardware and the DOU microprogram
changes the contents of the corresponding register in the DOU into an atom.

(2) Accessing atoms in specific locations in list

This operation becomes necessary quite often even though, since it is
executed using such functions as car and cdr for list processing, its
function is not included among the basic ones for list processing. The list
processing language pop-11 offers this function.6 When an ordinary list cell
operation method is used, this operation is performed by tracing the target
list until the target atom location is reached. The ATOM enables the target
atom location in a list to be reached directly. When the ATOM performs this
operation, it first outputs the target node address from the DOU to the data
bus, providing an instruction for the matching operation executed by the
SOUs. As indicated in Table 1 matching can compare a leaf-data node
address, leaf-data value or an entire set of list representation in each
SOU with the data existing on the data bus. When the data from an SOU is
found to match the data present on the data bus, the M flag of the SOU is
set. After the M flag of the SOU storing the element to be accessed is set,
the DOU can access the SOU directly (by specifying the M flag as the
selection condition). Figure 8 illustrates an example of a matching
operation.

(3) List Comparison

The equivalence between two lists can be determined based on the following
two conditions:

(i) All the leaf-data included in a list are also included in the other
list.

(ii) The other list contains no other leaf data.

The second condition has become necessary since the list representation by
the ATOM does not include a termination indicator "nil."

38

<D MO« M,X
© NCMJU) »A.DATA

0

DATA JAufj tA l' -I I t*u!j «* C

iMD

mm HITTim mm
ramm
smnD

Figure 8. Matching Operation Example

This list comparison can also be performed directly, without involving
indirect list processing. When it is performed, first, the two lists to be
compared are loaded into registers from memory. Subsequently, the leaf data
included in one of the two lists are sequentially read out to the DOU and
are matched with the contents of the other list in the above-described
manner. The matching leaf data found between the two lists are deleted.
The matching operation is performed for all the leaf data included. If the
two lists are found to have become empty upon the completion of the matching
operation, the two lists are judged to be equivalent.

In the above-described way, the list comparison operation, complex and time-
consuming when performed by the conventional method, can be executed through
the simple repetition of leaf data comparison by the ATOM.

(4) Pattern matching

Pattern matching becomes necessary when one of the two lists compared for
determination of equivalence comprises a pattern. A pattern, as referred
to here, is a list containing undefined elements. More specifically, it is
a list with some elements represented by variables.

In the ATOM, the variables involved in the matching operation are also
assigned a data type. The data type assigned constitutes a piece of atom
data identified by a tag. Therefore, a pattern, if containing no segment
element, can be compared with a list as described above, except for the
binding of open and closed variables. In comparing them, open variables are
regarded, at the instructional level, as unconditionally matching whatever
value will improve the matching efficiency.

If the pattern contains a segment variable, the element following the
segment variable is searched for in the data list, and the elements skipped
during this process are bound to the segment variable. When this operation
is performed, an environment preservation process required for back-tracking
is also executed.

39

As described above, a segment variable can be processed through the
retrieval of the subsequent element. The retrieval is easy. When a segment
variable occurs, the ATOM outputs the value part of the next leaf data from
the DOU to the data bus and compares the output value with the data store
in each SOU.

5. Simulation Results

To verify the effectiveness of the ATOM architecture, we carried out a
dynamic characteristic examination and a preliminary performance evaluation
using sample programs before analyzing real-use programs on a real machine.

Specifically, we created a simulator, of the machine language level, for
collecting such data as the execution frequency of each machine-language
instruction and the total number of execution cycles (counted with the
addressing mode and data taken into consideration) and executed the
following programs using the simulator.

(a) Differential program (Derivative) (4)
(b) Monkey and bananas (5)

The differential program is designed to differentiate the symbols included
in simple polynomials. The processing performed by the program mostly
comprises list processing, with no pattern matching. Coding is by manual
compilation based on the assumption that the LISP program mentioned in the
literature* is to be executed on the ATOM. For the reader's information,
"cons" and function designator are frequently executed in the LISP program.

The Monkey and Bananas program is often used as a production system sample.
Most of the processing performed by this program comprises pattern matching.
The Rete algorithm1 is not used in this program. The patterns appearing in
this program do not contain segment variables. We carried out coding
directly, using the ATOM assembly language, while being somewhat concerned
about high-level languages.

(1) Examination of dynamic characteristics

We classified the instructions for use by the ATOM into groups and
calculated the ratio, among the instruction groups, of the execution of each
group of instructions as well as that of the number of execution cycles
counted during their execution. The results are listed in Tables 2 and 3.
From the results of the ratio calculations, the following can be said:

1) The instructions for list moving are the highest with regard to the
ratios of both execution frequency and the number of execution cycles. It
is assumed that they are executed mostly for accessing stacked parameters.
Therefore, the ATOM operation will be accelerated further with the adoption
of a stack cache.

2) Even in such a program as Monkey and Bananas, that performs mostly
pattern matching, the number of execution cycles counted during the
execution of matching-related instructions is about 10 percent of the total

40

Table 2. Instruction Execution Ratios for Differential Program
Execution Execution
frequency cycle count

Classification Instruction examples ratio (*) ratio (%)

Leaf processing
List move SMOV.SPUSH.SPOP 32 37
Leaf move GET LF 26 22
Leaf merge MERGE,APND 26 22
Leaf delete DEL LF 26 22
Node address ADD TAD,SUB TAD.SHD AD 26 22

operation

Matching operation
Leaf matching MCH LF 0 0
Node address MCH AD 0 0
matching

Element matching MCH_VL 0 0

Tagged-data operation SADD.SEQ.SETT 3 3
instructions

Control instructions JMP,LOOP,CALL,RET 17 18

Other general
instructions ADD.TEST.DEC 22 20

Table 3. Instruction Execution Ratios for Monkey and Bananas

Classification instruction examples

Execution Execution
frequency cycle count
ratio (%) ratio (%)

Leaf processing
List move SMOV.SPUSH.SPOP 25 33
Leaf move GET LF 22 19
Leaf merge MERGE,APND 22 19
Leaf delete DEL LF 22 19
Node address ADD TAD,SUB TAD.SHD AD 22 19

operation

Matching operation
Leaf matching MCH LF 10 8
Node address MCH AD 10 8
matching

Element matching MCH_VL 10 8

Tagged-data operation SADD.SEQ.SETT 1 1
Instructions

Control instructions JMP,LOOP,CALL,RET 23 21
Other general

instructions ADD.TEST.DEC 19 18

41

number of cycles. This low ratio is thought to be attributable to the
effect of parallel leaf-data processing, made possible by the ATOM
architecture.

3) The execution cycles counted during the execution of the instructions
for leaf processing (various instructions are combined to perform basic list
processing), excluding those for list moving, account for about 20 percent
of the total execution cycles.

4) When the leaf processing, matching operation, and tagged data processing
performed by the ATOM are referred to jointly as symbol processing, the
ratio of symbol processing to nonsymbol processing, with regard to the
number of execution cycles, is 6:4. The non-symbol processing is performed
through the execution of control instructions and other general
instructions. The number of execution cycles counted during symbol
processing, as well as those counted during non-symbol processing, accounts
for about 20 percent of the total number of executed cycles.

(2) Comparison with conventional machines

To compare the ATOM with the Symbolics-3600 (Common LISP) and SUN3-260 (pop-
11), programming was conducted on the three machines using the respective
languages. For the ATOM, the execution time was calculated based on the
total number of execution cycles determined by carrying out simulation with
the microprogram cycle set to 125 ns (8 MHz). During the sample program
simulations, no list requiring the exceptional processing mentioned in
Section 2 occurred. The execution times calculated based on the results of
sample program simulations are listed in Table 4.

Table 4. Sample-Program Execution Time (in ms)
Sample ' Machine - SUN SYMBOLICS
program name ATOM (POP-11) (Common LISP)

Differential program 0.43 (1) 2.5 (5.8) 0.76 (1.8)

Monkey and Bananas 11 (D 250 (23) 1,260 (115)

Note: Figures in () indicate execution times relative to the base figure
of 1 for the ATOM.

Even though the execution efficiency achieved by the ATOM in executing the
differential program, when compared to the execution time required by the
other two machines, was not very great, the improvement exhibited by the
ATOM in executing Monkey and Bananas was remarkable, indicating the ATOM'S
potential for high-speed processing. As mentioned before, the differential
program is mostly comprised of list processing, while the contents of
processing performed in the Monkey and Bananas mainly include pattern
matching. Therefore, the difference in high-speed processing efficiency
exhibited can be assumed to have resulted from the fact that the ATOM
architecture was more suitable for pattern matching than for list
processing.

42

6. Conclusion

A new tabular list representation that utilizes list cells, differing from
the conventional list representation, and the architecture of the symbol
processing machine ATOM that has been designed to process the new list
representation at high speeds have been described. Simulations were carried
out to study the dynamic characteristic of the ATOM and to evaluate its
performance preliminarily.

The results of simulations performed using sample programs have indicated
that the ATOM, as it has been intended, is noticeably efficient in
accelerating the execution of programs, the contents of which mostly
comprise pattern matching. Therefore, the ATOM architecture that enables
the parallel processing of leaf data has been ascertained to be effective
in executing programs at high speed.

At present, ATOM hardware of the bit-slice type for operation under
microprogram control is being developed. The microinstructions are of a
128-bit horizontal type. Each consists of fields used to control the DOU
and SOUs independently. The leaf memory of each SOU will be able to store
64 K leaf data, and the basic capacity of the DOU memory will be 2 M words.
A service processor is linked to the ATOM in order to realize the functions
of microprogram loading, debugging, and monitoring.

The future tasks with regard to the ATOM include a performance evaluation
through the execution of large-scale programs on the real machine, an
adaptability study of algorithms, e.g., Rete, in order to enhance the
matching efficiency in production systems, and the materialization of the
algorithm judged desirable according to the study results.

References

1. C.L. Forgy, "Rete: A Fast Algorithm for the Many Pattern/Many Object
Pattern Match Problem," ARTIFICIAL INTELLIGENCE, Vol 19, No 1, 1982,
pp 17-37.

2. ART Reference Manual, Inference Corp. 1987.

3. R. Wada, et al., "Internal Representation and Processing System in
List Structure," the Information Processing Society of Japan, Material
Prepared by Symbol Processing Study Group, 39-5, 1986.

4. R.P. Gabriel, "Performance and Evaluation of LISP Systems," the MIT
Press, 1985.

5. C.L. Forgy, "The OPS83 User's Manual," Department of Computer Science,
Carnegie Mellon University, 1986.

43

R. Barrett, et al., "POP-11: A Practical Language for Artificial
Intelligence," Ellis Horwood, 1985.

A.R. Pleszkun, et al., "The Architecture of LISP Machines," COMPUTER,
Vol 20, No 3, 1987, pp 35-44.

20109/9365

44

Parallel Processing Architecture, Sensor Information Processing

43067589d Tokyo KONPYUTA AKITEKUCHA SHINPOJIUMU RONBUNSHU in Japanese
17-18 May 88 pp 199-208

[Article by Masatoshi Ishikawa, Product Science Laboratory: "Parallel
Processing Architecture for Sensor Information Processing"]

[Text] Parallel processing architecture for realizing intellectual sensors
is discussed here. First, the sensor information processing configuration
is outlined and classified into two types, i.e., the SIMD-type and MIMD-
type. Then, the characteristics of each type and its application field are
described. In addition, as concrete prototype systems, 1) the prototype
parallel processing chip (SPE-8) and its application to a tactile sensor
(SIMD), 2) the designing of large-scale parallel processing, and 3) a
passive-type sensor system which uses a transputer, are described. Problems
associated with processing architecture in realizing sensor fusion and neuro
computing are investigated from the aspect of sensor information processing.

1. Introduction

Among the various automated devices which comprise an intelligent robot,
sensors hold the key to their high performance functions and mechanisms.
Recently, along with the progress in the higher integration of electronic
circuits, the realization of the concept of sensor intellectualization is
in great demand. With this concept, sensors are not recognized as simple
signal conversion devices as they have been in the past. Instead, they are
thought of as information processing modules by conducting the sensor's
inherent processing using a subsistent operation processing mechanism in
combination with detection functions. When this operation processing
mechanism is viewed from the processing system, i.e., the entire computer
system, it seems to be part of a parallel distributed structure.
Unfortunately, however, parallel architecture is not currently well
recognized.

Accordingly, when taking sensors applied to an intelligent robot as an
example, the sensor's processing configuration is divided into two
categories. One includes the processing of information from high
homogeneous sensors centered around pattern processing, and the other is the
processing of information from heterogeneous sensors. Suitable architecture
for each processing configuration will be shown, and their comparisons made.

45

First, regarding parallel processing architecture of the SIMD structure that
is suitable for the former's configuration, the LSI architecture for
parallel processing whose prototype was constructed to realize local pattern
processing is shown. The example of a tactile sensor combined with the
detection unit is described. In addition, a plan to realize large-scale
parallel processing by the use of multiple LSIs is outlined.

Then, an experimental language to describe the processing structure of a
sensor is discussed. From the viewpoint of sensor fusion which integrates
and unites various kinds of sensor information, the architecture mentioned
above is arranged, and a technique for its realization is proposed.

In addition, the positioning of sensor information as part of the
realization of a computation structure based on the neuron network model and
method to realize the processing structure, which have become the subjects
of study in recent years, are also discussed.

The architecture discussed in this paper is able to connect sensors, i.e.,
I/O directly with each CPU. This is due to the attempt to suppress the I/O
bottleneck under parallel processing. In this respect, it is the
architecture that is believed to regard the I/O as important. Particularly,
since the I/O formation plays an important role, this architecture is
indispensable in realizing the neuron network model.

2. Parallel Processing in Sensor Information Processing

2.1. Intellectualization of sensors

Prior to discussing the definite processing structure, a concept1 regarding
the intellectualization of sensors is outlined as it relates to the entire
system, and is then organized.

The recent advances in the integration technology focusing on semiconductors
has brought small and high performance devices of various kinds based on the
LSI technology. Due to improvements in the degree of integration, the basic
design concept of a circuit and a computer system has been drastically
changed. Namely, such design standards as optimization, high speed and
minimization, which were taken into consideration in the past, have
disappeared. Instead of these, the possibility, simplicity and flexibility
of integration and also the existence of CAD are currently accepted as the
design standards. In addition, as the degree of integration increases, the
fact that communications costs are becoming higher than the computation
costs has been suggested a problem mainly associated with the complicated
wiring inside the LSI.2 However, this involved not only the problems related
to the LSI itself, but also those related to the entire computer system.
In this respect, distributed processing appears as one means of solving the
problems, i.e., under the concept in which local processing is carried out
by a local processing mechanism, the idea of "transmittance after
processing" rather than "transmittance before processing" is attempted.

46

This idea can be applied to the processing of sensor information without
making any changes. In this case, the existence of essential communications
limits the sensor's output. This differs from the computer system, as does
the problem involving cost. A communications path between a sensor and the
central processing mechanism has a limited number of wires and
communications capacity. This could limit sensor applications. In order
to solve this problem, it is necessary to improve the quality of the data
that flows in the communications path in order to utilize the limited
communications capacity effectively. To do so, it is necessary to join the
processing mechanism with a detector. This means that a sensor should not
be recognized as a simple detection converter, but instead, should be
thought of as an independent signal or information processing module. This
is called a sensor's intellectualization.

2.2 Concept of Sensor Processing

Following is a summary of the sensor processing concept. Processing on a
sensor must be captured through a broader concept than that of ordinary
processing. Figure 1 explains this idea. As shown in this figure, when x
is thought of as a phenomenon involving measurements or the state of the
system fl, a measured quantity x forms a part of the state x, and is
converted to that sensor's output s through the sensor's detection
conversion mechanism. This process can be expressed by equation (1), where
w is a physical phenomenon that rules O, and is used as an operator.

S - w(x) (1)

The ideal mechanism of the sensor is obtained when the operator w, with
respect to the measured quantity x, becomes equation (2) as part of w,

s - w(i) (2)

provided that w is approximately analytical, i.e., if the inverse operation
Sf1 can be realized (linear is preferable), it is acceptable. In other
words, it is acceptable if x is selected from x. In this regard, it is said
that a sensor is the device used to extract and select information.
However, if the sensor's output s itself cannot realize an ideal sensor, an
additional operator a is applied to s.

s' — CT(S) - aw(x) (3)

a is designed so that the quantity aü> becomes approximately analytical.
This means that the processing of a by a sensor involves only the expansion
of the inherent sensor's mechanism S. Instead of simple processing of a,
the more essential phenomenon w and/or processing of the characteristics (w)
of the sensor itself must be taken into consideration along with their
combinations.

Therefore, since physical and chemical quantities, including electric
quantities through the sensor characteristics, are dealt with, the
realization of a processing structure which utilizes these characteristics
is thought to be possible. Based upon this way of thinking, the author

47

Condition Sensor
Processing
in a nar-3
row sense

Output

Phenomenon
or system Q(A>)

Figure 1. Concept of Processing on a Sensor

developed a sensor3 to extract the center of the pressure distribution by
using a pressure sensitive conductive rubber, a sensor * to display pressure
distribution using a pressure sensitive conductive rubber and liquid
crystal, and an association memory system5 for use with optical operation.
These devices are designed to realize parallel computation as a physical
phenomenon, instead of as an electronic circuit. In this respect, they
comprise a kind of parallel processing.

However, the realization of this processing depends on the characteristics
of an object. Since the sensors are usually for exclusive use, a limit is
placed on their application in most cases. The realization of general-
purpose processing is not easy. In this situation, the processing used for
specific purposes is not going to be discussed. Instead, the processing
architecture for general purposes is proposed through the introduction of
processors with different configurations.

2.3 Mechanism and Configuration of Sensor Information Processing

First, the processing mechanism of a sensor, i.e., the mechanism and
functions of a mentioned above, is classified, and examples of concrete
operations are presented. Table 1 summarizes these sensor classifications.

Table 1. Classification of Sensor Processing Mechanisms
Classification Mechanism Operation example

Correction

Operation

Control

Transmittance

Display

Handling

Compensation, correction,
noise elimination lineari-
zation
Abstraction of features,
conversion, learning, trans-
formation, integration,
recognition
Execution of measurement
algorithm, passive sensing
Output conversion, standard-
ization, compression,
modulation
Distribution display, dens-
ity conversion, visualization
Instruction execution

Average, comparison,
filtering

Correlation, average,
centroid, sum, moment,
comparison

Servo, sequence control,
scanning
Coding, encoding, error
detection/modification

Correlation, scanning,
image abstraction
Parameter adjustment,
sampling order

48

Of these mechanisms, when some of them are strongly and/or directly related
to processing peculiar to a sensor, the effectiveness of the sensor's
intellectualization can be expected to a great extent.

Toward such intellectualization, many attempts have been made to unify the
peripheral circuit with a detection unit on the semiconductor pressure
sensor. One having a built-in scanning circuit has already been made.6 In
addition to these, a sensor7 designed to unify a scanning circuit which
converts the pressure distribution (64 x 64) into video signals utilizing
pressure sensitive conductive rubber, a technique to obtain the center of
the pressure distribution under a matrix configuration utilizing a parallel
processing circuit, and the passive sensing method which would recognize the
outline of an object by conducting positioning control of patterns with the
above-mentioned circuit are also proposed.9 The integration of peripheral
circuits becomes a very important subject for these sensors when realizing
the detection structure corresponding to each sensor.

However, the method utilizing the physical structure, as described above,
and/or intellectualization by electronic circuits are for specific usage,
not for general purpose use. Therefore, in order to realize processing for
more general purpose use, the introduction of processors under some
configuration is inevitable.

In the face of the development of intellectual sensors to be used with
processors, advances in distributed processing for the entire system using
sensors is highly anticipated. Namely, it is necessary to make the
positioning of the entire system a staged multiprocessing system. From the
top-ranked processor to the bottom-ranked sensor or actuator, through each
rank of level, a processor responsible for inherent processing at each level
should be realized. This is the idea suggested.

In this paper, the processing of a sensor located in the bottom rank is
discussed. In other words, an attempt is made to get the processor to
conduct inherent processing for a sensor and to place the processor
executing parallel processing inside a sensor.

2.4 Parallel Processing of Sensor Information

The structure of parallel processing involving sensor information is
generally divided into two classes, and their characteristics are discussed.

The first configuration corresponds to processing information from visual
or tactile sensors which are placed on a matrix or array. The main purpose
of this kind of processing involves pattern processing focused on
correlative computation. It is suitable for SIMD-type processing.

Regarding the sensor that corresponds to the above configuration, Raibert,
et al., are studying a prototype tactile sensor which involves LSI
application, called the VLSI tactile sensor.10 In this sensor, a metal
electrode is placed directly on 6 x 3 parallel processors arranged on a
silicon wafer, and the pressure sensitive conductive rubber placed on it is
used as the pressure sensitive material. Then, a correlative computation

49

of the pressure distribution information is executed. This is the purpose
of the sensor. In this paper, the processing structure of this sensor is
discussed in Chapters 3 and 4.

The second configuration involves the processing of information from
heterogeneous sensors. Since a lesser degree of homogeneousness exists in
this processing configuration, this sensor is suitable for MIMD-type
processing. With regard to this kind of sensor, Henderson, et al. , proposed
the concept of a logical sensor.11 The function of this device is to realize
a flexible processing network by defining the logical sensor of the abstract
data-type as a processing module, in order to avoid the confusion related
to the software accompanying the sensor's intellectualization. That is, the
processing of heterogeneous sensors can be broken down into a processing
module peculiar to each sensor. An intellectual sensor results from making
hardware using the processing sensor. Its processing structure is described
in Chapters 5 and 6 in this paper.

3. Local Pattern Processing LSI "SPE-8" and Intellectual Tactile Sensor

First, an outline of the LSI pattern processing used to execute local
parallel operations and its actual application to a tactile sensor will be
discussed as an example of an intellectual sensor conducting SIMD-type
processing.

3.1 Design Concept of Local Pattern Processing LSI "SPE-8"

Using parallel processing LSI to execute local pattern processing was
developed first. This LSI is called "SPE-8 (sensory processing element-8)"
since eight processing elements corresponding to a sensor are placed on one
chip.

In designing the SPE-8, the realization of scanning parallel processing and
perfect parallel processing was assumed to form the structure of the sensor
using the SPE-8. The realization of scanning parallel processing is
discussed in Section 3.4, and that of perfect parallel processing is
discussed in Chapter 4.

The objective of designing the LSI and sensor is to realize high integration
and high speed while maintaining the general-purpose characteristics. In
order to maintain these characteristics to some extent, the sensor was
separated from the processing portion, and a structure making the cascade
connection possible was adopted in order to correspond to differences in
kinds of sensors and the number of detection points. In addition, in order
to promote high integration and high speed, a method to input information
directly from the sensor into the processing elements was used.
Furthermore, since bit serial operation was adopted as the inner operation
method, a circuit was constructed according to the limited number of gates.
Functional degradation was incorporated through the increased parallelism,
and the composition of a transmitting circuit and scanning circuit was also
taken into consideration. In addition, the application of a compact circuit
to the sensor was attempted.

50

3.2 Structure of SPE-8

As described above, the SPE-8 is a pattern processing LSI with eight built-
in processing elements. Its structure is shown in Figure 2. The eight
processing elements employ the 1x8 composition. Each processing element
has one channel for input and four pairs of connecting wires in four
different directions. There is a common instruction among the processing
elements, of a 10-bit composition (op code 2 bit + substantial field 8 bit).

tlllill 2 7
PE i

1 IiMtruetton ta«»sfa>r

10 II 12 13 14 IS IS 17 IS 19
opcode
(2)

operand
(8)

Figure 2. Structure of SPE-8

3.3 Structure of Processing Element

The structure of the processing elements in SPE-8 is shown in Figure 3.
Since SPE-8 is intended to be a general-purpose LSI for pattern processing,
a multiplication/addition operation function enabling correlative operation
is provided in addition to general logical operations and
addition/subtraction operations. Moreover, because bit serial operation is
adopted, 1-bit, 4-bit, and 8-bit operation is possible.

from tensor

from 4 neighbor»

to 4 neighbor»

M
V
X

I —»-,
 JWL Shift Register A ,

, JML Shift Register T ,

, JML, Shift Register W .
^Ixr 14*4)

illl

'

H
V
X \ ALU /

ALV ^S

Figure 3. Structure of Processing Element

There are three shift registers inside the processing element, respectively
called A (accumulator), T (template), and W (weight). Each register is
divided into the upper ranked 4 bits and lower ranked 4 bits. Swapping of
each 4 bit [segment] is possible within a register. Only the upper ranked

51

4 bits on the W-register can be utilized as the multiplication substitute.
Data with a 1-bit length corresponds to on-off patterns. Since a register
has 8 bits, the processing of 8 data items per register is possible.

Input from the sensor is diversified (becomes multiplex) along with
information from neighbors and registers through a Schmidt trigger, becoming
I-information as shown in Figure 3.

As a multiplication device to realize multiplication/addition operations,
an improvement by reducing the number of gates takes place for Booth's
algorithm, currently in general use. Due to this, 4 bit (W-register's upper
ranked 4 bit/parallel) x 4 bit (I-data 4 bit/serial) ■* 8 bit (8 bit/serial:
input of ALU) multiplication can be realized by a compact circuit.

At ALU, bit serial operation, i.e., serial operation beginning with the
lower ranked bit, in order, is carried out. The precise control of the
carry bit makes variable data operation possible. There are four different
operations--AND, OR, EXOR (exclusive OR) and addition. The handling of
negative numbers is possible at an input of the B-side due to the treatment
of a sign bit. Regarding the handling of the sign and carry bit, the upper
ranked 4 bits (same as 8 bit handling) and lower ranked 4 bits can be used.

An output is chosen from an ALU output, while A and T register outputs and
I data. The reason for using I is to permit input data to pass through.
It compensates for a 4-neighbor connection, i.e., neighboring data in the
oblique direction of 8 neighbors is connected by two sets of 4-neighbor
connections.

There are actually 32 control bits inside the SPE-8. However, its
composition is of the intensive form of 4 kinds of 10-bit sections,
classified according to the execution formation. Since this instructional
data is mostly stored by instruction registers, the conditions are
maintained without instructional change.

Regarding the control of the SPE-8 interior, synchronizing control using a
clock pulse (CP) is applied. A maximum four-stage pipeline structure is
adopted inside each cell.

Two different kinds of instruction control methods are assumed. One is the
method employing a microprogram involving inherent memory of firmware. The
other is the method utilizing an I/O processor by connecting the I/O with
a computer. Since subroutine calls and various conditional judgments can
be accomplished with the microprogram control method, high level
intellectualization is achievable. In this case, however, the scale of the
circuit becomes larger. This means that it is not advantageous to reduce
the size. In the case of the I/O processor method, reducing the size is
easy, but achieving high speed is difficult.

The general specifications for the SPE-8 are shown in Table 2. As seen in
this table, the SPE-8 adopts the gate array of 3312 gate integration at its
maximum. Its actual integration is 2970 gates. This function can be

52

Table 2. Specifications of SPE-8
Items Specifications

Degree of integration MAX: 3312 gates/chip (2 input NAND conversion)
Real: 2970 gates/chip (2 input NAND conversion)

- 337 gates/cell x 8 + 274 gates/chip

Delay time 2 ns/gate (inner gate F/0-3, wiring length 3 mm)
3 ns (input buffer F/0-3, wiring length 3 mm)
10 ns (output buffer CL-15 pF)

Power supply 5 V + 5 percent single power supply

Input/output TTL compatible

External shape 80-pin, flat package

realized by 337 gates per processing element, while 274 gates are necessary
for the normal part.

A maximum execution speed of 87 ns (loading capacity 30 pF) was attained as
the result of the delay simulation of a critical path. The actual measured
result on the test circuit (memory cycle time: 55 ns) was a 90 ns cycle
time, including a delay on a peripheral circuit.

All functions of the SPE-8 were confirmed through software simulation with
CAD, tests employing a LSI tester and through the use of an actual circuit.

3.4 Intellectual Tactile Sensor

An example of the intellectualization of a tactile sensor employing LSI will
be discussed. This intellectual tactile sensor is able to realize local
pattern processing with a high speed when combined with a detection unit
(8 x 8) that uses pressure sensitive conductive rubber.

The characteristics of the processing when a tactile sensor is used are:
1) the amount of detectable information is not as great as that of vision,
and the localization of the processing is strong; 2) it is necessary to
deal with local pattern information; 3) high-speed processing is demanded
since results are sent directly to an actuator system as feedback; 4) the
sensor is usually installed on the arm and hand of a robot. Therefore,
small size and light weight, including compact wiring, are necessary. Due
to these features, the effectiveness of the unification of operation'
circuits and signal transmittance circuits with a detection unit is believed
to be considerable,14,15 and its development is eagerly awaited.

An example of the composition of the tactile sensor with the SPE-8 is as
follows. Figure 1 shows its circuit structure, and Photograph 1 [not
reproduced] shows the prototype sensor. As shown in Figure 1, the sensors
placed on a matrix are scanned in one direction, and one processing element
is allocated to one row. Due to scanning, its processing time becomes

53

longer than that of the perfectly parallel processing method.
Simultaneously measurement is not possible with this method. However, its
practical processing time is sufficient, as will be mentioned later.
Regarding integration, this method has an advantage in that one SPE-8 can
handle 64 (8 x 8) sensors. With regard to pressure information, a change
in the resistance of pressure sensitive conductive rubber is detected by an
electrode. However, since 1-bit operation is used in this case, only on-
off information is processed. Because the register of the SPE-8 is 8 bits,
each cell can handle only 8 points. When more than 8 points are needed,
cascade connections among SPE-8s are possible.

y preaeure-
conduclive
rubber

OUTUT
processing
element

Figure 4. Circuit Composition of Tactile Sensor With SPE-8

As seen in Figure 4, a diode is placed at each detection point. Pressure
sensitive conductive rubber is cut into strips, and nonconductive rubber of
the same thickness is inserted into that rubber. This prevents the flow of
nondirect current and leakage among electrodes, which is peculiar to network
resistance.

Instructional control is achieved by sending a program in memory to the
SPE-8 in order. With this method, conditional judgment is not possible.
However, the confirmation of basic operations can be carried out
sufficiently since its requirement for simple pattern processing operations

is low.

An actual processing execution example using this sensor is shown. In this
example, the edge pattern of an object becomes an output. A concrete
operation execution is:

output - (-(qi-i,j x qi+1(j x q^^ x qi(j+i)) x qi;}

This operation only involves 4 neighbors, and is relatively simple. When
executing this operation, 12 steps (the establishment of a mode and the set
of scanning data) are initially required. Once the initial setup is
completed, actual operation is executed. This portion requires
approximately 83 steps due to the sensor's response delay. When the cycle

54

time is 100 ns, the operation processing results are obtained as the sensor
output at intervals of 8.3 fis.

4. Large-Scale Parallel Processing Using SPE-8

The SPE-8 can realize large-scale processing since mutual connection is
possible. Therefore, the design concept and fundamental structure of the
architecture (called "SPE-4k") for realizing the perfectly parallel-type
sensor information processing will be described. With this system, the
processing of information sent from 4096 sensors is directly connected to
4096 processing elements, utilizing 512 SPE-8 units.

4.1 Design Concept

Regarding perfectly parallel-type processing, many systems focusing on
graphics processing have been proposed.16 The connection machine is of this
type. The advantage of this type of processing involves its high speed.
On the other hand, however, its disadvantages include less flexibility in
SIMD-type control, the weakness of neighboring connections, large-scale
circuits and bottlenecks in the I/O.

Fortunately, a reexamination of this architecture from the viewpoint of the
sensor's intellectualization revealed that these defects can be avoided by
allocating a small-scale processing element to one sensor (I/O oriented).
This means that, of the defects mentioned above,less flexibility in the
SIMD-type control and the weakness of neighboring connections are not
significant problems when the degree of exclusiveness of the sensor's
processing is considered. The fear of getting large-scale circuits can be
diminished through the utilization of small-scale processing elements, such
as the SPE-8. Its size can be reduced to equivalent to or smaller than the
size of a sensor. Bottlenecks in the I/O will not become an essential
problem since the sensors are connected directly to the processing elements.

The conventional system regards the operational mechanism as an important
design consideration. Namely, it is designed under the concept whereby the
operational mechanism architecture comes first, and then the I/O is
connected to it. However, in this system the I/O, i.e., a sensor, is
structured first, and then the operational mechanism is added.

4.2 Basic Architecture

The perfectly parallel processing intellectual sensor SPE-4k essentially
conducts the processing of homogeneous sensor information from 64 x 64 -
4096 points. The entire architecture is shown in Figure 5. As seen in this
figure, SPE-4k is composed of 512 SPE-8 units. In this kind of perfectly
parallel method, high-speed processing is possible, and no problems
associated with the time lag accompanying scanning exist. The control
method and connection with a sensor (optical sensor is assumed) are the same
as those of the intellectual tactile sensor mentioned above. However, the
integration of the whole (corresponding to 8 sensors by an 80-pin flat
package) is not very good due to the SPE-8 package. In addition, SPE-4k is
designed to be applicable not only to single-layer connections, but also to

55

tensor

63 62 •" 2 1 0 processing
element

Figure 5. Composition of SPE-4k

multiple-layer composition (4 layers in this case) with the decomposition

of 32 x 32 modules.

Detailed designing of the SPE-4k is currently in progress, with its
prototype scheduled to be constructed in the very near future.

5. Passive Sensor System by Parallel Processing Using Transputer

The architecture described above is the processing configuration for similar
kinds of sensor groups. However, many kinds of sensors are used in the
fields of FA and robots. Accordingly, as for the processing architecture
of the MIMD-type used to process information from various kinds of sensors,
its design concept and structure will be discussed.

5.1 Design Concept

The information obtained from different kinds Of sensors has different
properties. Moreover, it has different characteristics and configurations.
Since it is not effective for a single processing mechanism to process
different kinds of information in an intensive manner and, also, with the
processing uniformity of this method being bad, the MIMD-type processing
configuration becomes effective. However, even in this case, it is
necessary to realize the compact configuration of operation mechanisms, such
as the CPU and memory, as much as possible since it ultimately aims at the
sensor's intellectualization.

On the other hand, not only intrinsic processing functions, but other
functions as well can be realized through the local application of general-
purpose processors. Of them, the realization of control functions presents
the idea of passive sensing as its fundamental concept, and is helpful m
improving the quality and quantity of the information obtained from sensors.
The idea of passive sensing is based on feedback control between sensors
and actuators, and tries to construct a recognition mechanism as its upper-
ranked concept. It also attempts to realize a real-time measurement control
system with an advanced recognition mechanism.

56

5.2 Basic Architecture

In order to realize this MIMD-type processing, the prototype information
processing system composed of various kinds of sensors, termed the passive
sensor system, has been constructed using a transputer that is a CPU
suitable for parallel processing. Figure 6 presents a block diagram of its
composition.

actuator
senaor actuator

tensor
actuator actuator actuator

sensor
actuator

c object environment

Figure 6. Passive Sensor System

The transputer is a 32-bit processor based upon the RISC concept. Its
structure is appropriate for high speed parallel processing based on real-
time processing. In developing a parallel processing program, the exclusive
parallel processing descriptive language "Occam" is provided. Therefore,
advanced parallel processing descriptive ability can be obtained. In
addition, since communications and synchronization mechanisms for parallel
processes are provided as hardware, problems involving the synchronization
of multiprocessor time do not readily occur.

With this passive sensor system, two kinds of boards and 10 transputer units
are used in all. Among them, six units are directly connected to sensors
and actuators through a 4-channel D/A converter (for input of information
from the sensors) and a 4-channel A/D converter (for output to the
actuators). One transputer, one A/D converter and one D/A converter are
placed in one board. The remaining four units, which communicate with an
EWS in a higher rank and conduct processing among sensors and general
processing, are located on one board. Communication between CPUs occurs

57

through the inherent serial link of the transputer, and communication with
an EWS is carried out with a multibus. Therefore, due to the signal
processing on the DWS side, a mechanism similar to parallel processing is
realized. Nevertheless, one objective is to realize this mechanism by real-
time processing on the transputer side as much as possible.

The manufacturing of this system has been completed, and its performance
evaluation and the development of application programs are currently in

progress.

6. Sensor Fusion

The object of the passive sensor system mentioned above is the realization
of sensor fusion. Its concept is as follows:

6.1 Basic Concept

As the number and kinds of sensors used in a system increase, the necessity
for the integration and fusion of information from these sensors increases.
The realization of a polymodal processing system in a heterogeneous manner
is sensor fusion.18 Examples include binocular fusion to extract three-
dimensional information from visual information through both eyes, and
fusion discrepancies between visual and tactile information can be pointed

out.

6.2 Processing Software

In order for such a processing system to be realized, the processing
structure must be arranged not only by hardware, but also software.

In this regard, the author and others developed experimental language to
describe sensor-related processing structures, in a unified manner, from the
aspect of software.19 This language adopted Henderson's concept of the
logical sensor.11 As shown in Figure 7, the logical sensor denotes that
operation processing by software or hardware is added to the output (or
outputs) of a physical or logical sensor. In addition, the concept of the
logical sensor is further advanced and is recognized as the language that
includes the memory and learning functions related to sensor information.

input Physical Sensor

or

Logical Sensor

Processing

(Software or

Hardware)

output

Logical Sensor

Figure 7. Definition of Logical Sensor

Some attempts to simplify the description of sensor information processing
by combining the processing on the intellectual sensor and the software, and
to realize a smooth conversion toward the intellectual sensor are included
in this language. However, since it is experimental language on a simple

58

processor, the following problems exist: 1) When shifted to parallel
processing, the load distribution cannot be determined at down-loading;
2) the synchronization time is uncertain. In the case of the passive sensor
system mentioned above, the parallel processing descriptive language Occam
attached to the transputer and the development system are provided.
Regarding the first problem, it could be partially resolved through the use
of Occam and the development system functions. With regard to the second,
it can be resolved sufficiently with the high-speed task switch function of
the transputer.

7. Neuro Computing and Sensor Information Processing

Very recently, parallel processing architecture based on a neuro circuit net
model20 has been attracting attention. From the viewpoint of sensor
information processing, the architecture which realizes neuro computing
focuses on the I/O structure. The positioning of sensor information and its
processing method under neuro computing will be investigated as follows:

7.1 Existence of I/O Bottleneck

When the computation structure of neuro computing is explored by
conventional computers, emphasis is placed on realizing its parallel
computation structure. This involves the resolution of the conventional von
Neumann bottleneck. However, neuro computing is basically an "input -»■
operations -» output" device with an advanced parallel structure. In
addition, because its ability for operations and memories is low, a large
number of processing elements lacking flexibility are placed in a parallel
manner, and parallel operations are carried out through a high density
network, a network bottleneck must not exist. For this reason, realization
through optical operations is also being attempted.

»or proettting actuator

(a) Conventional computer

tensor neural nrtwork actuator

(b) Neural network

Figure 8. Neuro-Computing and Sensor Information Processing

In order to realize this operational structure without the bottleneck, each
element must independently have the "input -+ operation (specific purpose
and less performance acceptable) -► output" function. This aspect is
compared with that of a conventional computer in Figure 8. The achievement

59

of a high performance operational unit has been targeted in a conventional
computer (parallel computer included). A demand for parallelism in an I/O
unit has not appeared. Therefore, when attempting to design neuro computing
without changing the conventional configuration, a bottleneck occurs in the
I/O unit, even though the bottleneck does not appear in operation
processing.

7.2 Necessity for I/O Oriented Processing Mechanism

Due to the above reasons, the structure of the processing mechanism
realizing neuro computing is very similar to that of a parallel processing-
type sensor's intellectualization. This means that even in the case of
neuro computing, attention is paid to a network. In particular, the
structure of the processing mechanism with the sensor and actuator, as shown
in this paper, becomes necessary for its realization.

8. Conclusion

From the viewpoint of sensor intellectualization, operational processing
architecture related to sensor information has been discussed.

In this paper, aiming at incorporating a highly general-purpose processing
mechanism with a sensor device for exclusive usage, several architectures,
including their characteristics, have been described. The actual prototype
models and processing results have been shown for some of them.

The operation processing architecture related to sensor information
processing has unique design conditions involving integration and the degree
of exclusive use when compared to the conventional computer architecture
design concept. In this paper, the composition of sensor-oriented operation
architecture is basically proposed as the design concept for these
conditions. This concept involves paying attention to the I/O portion or
unit and then assigning priority to its functions, although the design
concept and evaluation of the conventional computer architecture have
concentrated on the operation portion or unit. On the other hand, it is
pointed out that the architecture realizing neuro computing should have a
structure which regards parallelism of the I/O as being important.
Therefore, in designing operation architecture to realize neuro computing,
the sensor's intellectualization and its design concept have been shown to
be necessary.

Along with the higher integration of a computer and/or a processor and the
expansion of its field of application, not only the architecture of the
computer itself, but also discussions of the architecture, including its
applications, should be promoted in the future. The author feels strongly
that discussions involving sensor architecture based on the computer
architecture described in this paper must become more active.

References

1. Yamazaki, "Sensing Technology II-Sensor's Intellectualization,"
MEASUREMENTS & CONTROL, Vol 24, No 12, 1985, pp 1135-1142.

60

2. H.J. Siegel, "Interconnection Networks for Parallel and Distributed
Processing," An Overview, IEEE TRANS. COMPUTERS, Vol C-30, No 4, 1981,
pp 245-264.

3. Ishikawa and Shimojo, "A Method To Detect the Center of Two-
Dimensional Load With Use of Pressure Sensitive Conductive Rubber,"
J. OF MEASUREMENT & AUTOMATIC CONTROL SOCIETY, Vol 18, No 7, 1982,
pp 730-735.

4. Shimojo and Ishikawa, "Pressure Distribution Display Method by
Pressure Sensitive Conductive Rubber and Liquid Crystal," J. OF
MEASUREMENT & AUTOMATIC CONTROL SOCIETY, Vol 21, No 2, 1982, pp 177-
182.

5. M. Ishikawa, et al., "Optical Association--A Simple Model for Optical
Associative Memory," APPLIED OPTICS, submitted.

6. C. Kowalski, "Silicon Sensors for Tactile Arrays and Distributed Touch
Sensing," SME TECHNICAL PAPERS, MS84-1040, 1984,

7. Ishikawa and Shimojo, "Pressure Distribution Sensor With Video Signal
Output and Tactile Pattern Processing," J. OF MEASUREMENT & AUTOMATIC
CONTROL SOCIETY, in print.

8. Ishikawa, "Method To Detect the Center and Sum of Output Distribution
from Sensors in Matrix," Ibid., Vol 19, No 5, 1983, pp 381-386.

9. Ibid., "Passive Sensor System by Parallel Processing," submitted.

10. H.M. Raibert and J.E. Tanner, "Design and Implementation of a VLSI
Tactile Sensing Computer," INT. J. ROBOTICS RES., Vol 1, No 3, 1982,
pp 3-18.

11. T.C. Henderson and E. Shilcrat, "Logical Sensor System," J. ROBOTIC
SYST., Vol 1, No 2, 1984, pp 169-193.

12. Ishikawa, "Local Pattern Processing LSI With Parallel Processing and
Its Application to Tactile Sensors," J. OF MEASUREMENT & AUTOMATIC
CONTROL SOCIETY, Vol 24, No 3, 1988, pp 228-235.

13. Ibid., "Tactile Sensor With Parallel Processing Functions," SHINGAKU-
GIHO, ICD88-3, 1988.

14. L.D. Harmon, "Automatic Tactile Sensing," INT. J. ROBOTICS RES., Vol
1, No 2, 1982, pp 3-32.

15. Ishikawa, "Tactile System," COMPUTER ROLE, No 21, 1988, pp 59-66.

16. Maeda, "Graphics Processing Machine," INFORMATION PROCESSING, Vol 28,
No 1, 1987, pp 19-26.

61

17 Ishikawa and Maeda, "Design of Transputer Board with MULTIBUS Spec,
and Its Application to FA System," 32-bit Microprocessor Application-
Development -Evaluation, Nikkei McGraw-Hill, 1988.

18 Ishikawa, "Sensor Fusion System--Integrated Mechanism of Tactile
Information, J. OF JAPAN ROBOTICS SOCIETY, Vol 6, No 3, 1988, in

press.

19. Ishikawa, et al., "Development of Sensor Processing Language by
Concept of Logical Sensors," Measurement & Automatic Control Society,
the 24th Conference preprint, 1985, pp 49-50.

20 Amari "Neuro Computation--Aiming at Parallel Learning Information
Processing," MEASUREMENT & CONTROL, Vol 27, No 3, 1988, pp 255-263.

20149/9365 - END -

62

\
0 This is a U.S. Government publication. Its contents in no

way represent the policies, views, or attitudes of the U.S.
Government. Users of this publication may cite FBIS or
JPRS provided they do so in a manner clearly identifying
them as the secondary source.

Foreign Broadcast Information Service (FBIS) and Joint Publications Research Service (JPRS)
publications contain political, economic, military, and sociological news, commentary, and other
'nfo ma ion as well as scientific and technical data and reports. All informal,on has been oto.ned
fromforeign radio and television broadcasts, news agency transmissions, newspapers, books and
peToS Items generally are processed from the first or best available source; ,t should not be in-
ferred hat they have been disseminated only in the medium, in the language, or to the area indicated,
[terns from foreign language sources are translated. Those from English-language sources are
transcribed, with the original phrasing and other characteristics retained.

Headlines editorial reports, and material enclosed in brackets [] are supplied by FBIS/JPRS
ProceLingTndica ors such as [Text] or [Excerpts] in the first line of each item indicate how the ,nfor-
mation was processed from the original. Unfamiliar names which are rendered phonetically or
tTaSeTated by FBIS/JPRS are enclosed in parentheses. Words or names preceded by a question
mark and enclosed in parentheses were not clear from the original source but have been supplied as
appropriate to th6e context. Other unattributed parenthetical notes within the body of an item onginate
with the source. Times within items are as given by the source.

SUBSCRIPTION/PROCUREMENT INFORMATION

The FBIS DAILY REPORT contains cur-
rent news and information and is published
Monday through Friday in 8 volumes: China,
East Europe, Soviet Union, East Asia, Near
East & South Asia, Africa (Sub-Sahara),
Latin America, and West Europe. Supple-
ments to the DAILY REPORTS may also be
available periodically and will be distributed
to regular DAILY REPORT subscribers.
JPRS publications generally contain less
time-sensitive information and are published
periodically. Current JPRS publications are
listed in Government Reports Announcements
issued semi-monthly by the National Tech-
nical Information Service (NTIS), 5285 Port
Royal Road, Springfield, Virginia 22161 and
the Monthly Catalog of U.S. Government Pub-
lications issued by the Superintendent of
Documents, U.S. Government Printing Of-
fice, Washington, D.C. 20402.

U.S. Government offices may obtain sub-
scriptions to the DAILY REPORTS or JPRS
publications (hardcovers or microfiche) at
no charge through their sponsoring organi-
zations. DOD consumers are required to
submit requests through appropriate

command validation channels to DIA, RTS-
2C, Washington, D.C. 20301. (Telephone:
(202) 373-3771, Autovon: 243-3771.) For
additional information or assistance, call
FBIS, (703) 527-2368, or write to P.O. Box
2604, Washington, D.C. 20013.

The public may subscribe to either hard-
cover or microfiche versions of the DAILY
REPORTS and JPRS publications through
NTIS at the above address or by calling
(703) 487-4630. Subscription rates will be
provided by NTIS upon request. Subscrip-
tions are available outside the United States
from NTIS or appointed foreign dealers.
Back issues or single copies of the DAILY
REPORTS and JPRS publications are not
available. New subscribers should expect a
30-day delay in receipt of the first issue.

Both the DAILY REPORTS and the JPRS
publications are on file for public reference
at the Library of Congress and at many
Federal Depository Libraries. Reference
copies may also be seen at many public and
university libraries throughout the United
States.

